连续凸积分高斯噪声的合成

Q2 Mathematics
A. Dasgupta
{"title":"连续凸积分高斯噪声的合成","authors":"A. Dasgupta","doi":"10.31390/COSA.12.3.01","DOIUrl":null,"url":null,"abstract":". In the context of isometric imbedding we consider the method of convex integration using Haar functions. Given a short map f 0 on [0 ; 1], under appropriate randomization we construct random isometric maps f n using convex integration. It is then shown that n 3 = 2 ( f n (cid:0) f 0 ) converges weakly to a Gaussian noise measure. We next consider the problem of composing the Gaussian noises from successive convex integrations since isometric imbedding for surfaces proceeds through similar steps. Some applications to approximate isometric imbeddings for two dimensional manifolds are also considered.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition of Gaussian Noises from Successive Convex Integrations\",\"authors\":\"A. Dasgupta\",\"doi\":\"10.31390/COSA.12.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the context of isometric imbedding we consider the method of convex integration using Haar functions. Given a short map f 0 on [0 ; 1], under appropriate randomization we construct random isometric maps f n using convex integration. It is then shown that n 3 = 2 ( f n (cid:0) f 0 ) converges weakly to a Gaussian noise measure. We next consider the problem of composing the Gaussian noises from successive convex integrations since isometric imbedding for surfaces proceeds through similar steps. Some applications to approximate isometric imbeddings for two dimensional manifolds are also considered.\",\"PeriodicalId\":53434,\"journal\":{\"name\":\"Communications on Stochastic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/COSA.12.3.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.12.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 在等距嵌入的背景下,研究了利用哈尔函数进行凸积分的方法。给定[0;1],在适当的随机化条件下,我们使用凸积分构造随机等距映射f n。然后证明n3 = 2 (fn (cid:0) f0)弱收敛于高斯噪声测度。我们接下来考虑从连续凸积分中组合高斯噪声的问题,因为曲面的等距嵌入是通过类似的步骤进行的。本文还讨论了二维流形近似等距嵌套的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition of Gaussian Noises from Successive Convex Integrations
. In the context of isometric imbedding we consider the method of convex integration using Haar functions. Given a short map f 0 on [0 ; 1], under appropriate randomization we construct random isometric maps f n using convex integration. It is then shown that n 3 = 2 ( f n (cid:0) f 0 ) converges weakly to a Gaussian noise measure. We next consider the problem of composing the Gaussian noises from successive convex integrations since isometric imbedding for surfaces proceeds through similar steps. Some applications to approximate isometric imbeddings for two dimensional manifolds are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications on Stochastic Analysis
Communications on Stochastic Analysis Mathematics-Statistics and Probability
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信