玻色气体能量的下界

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S. Fournais, T. Girardot, Lukas Junge, L'eo Morin, Marco Olivieri
{"title":"玻色气体能量的下界","authors":"S. Fournais, T. Girardot, Lukas Junge, L'eo Morin, Marco Olivieri","doi":"10.1142/s0129055x23600048","DOIUrl":null,"url":null,"abstract":"We present an overview of the approach to establish a lower bound to the ground state energy for the dilute, interacting Bose gas in a periodic box. In this paper the size of the box is larger than the Gross-Pitaevski length scale. The presentation includes both the 2 and 3 dimensional cases, and catches the second order correction, i.e. the Lee-Huang-Yang term. The calculation on a box of this length scale is the main step to calculate the energy in the thermodynamic limit. However, the periodic boundary condition simplifies many steps of the argument considerably compared to the localized problem coming from the thermodynamic case.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower bounds on the energy of the Bose gas\",\"authors\":\"S. Fournais, T. Girardot, Lukas Junge, L'eo Morin, Marco Olivieri\",\"doi\":\"10.1142/s0129055x23600048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of the approach to establish a lower bound to the ground state energy for the dilute, interacting Bose gas in a periodic box. In this paper the size of the box is larger than the Gross-Pitaevski length scale. The presentation includes both the 2 and 3 dimensional cases, and catches the second order correction, i.e. the Lee-Huang-Yang term. The calculation on a box of this length scale is the main step to calculate the energy in the thermodynamic limit. However, the periodic boundary condition simplifies many steps of the argument considerably compared to the localized problem coming from the thermodynamic case.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x23600048\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x23600048","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们概述了在周期箱中为稀释的相互作用玻色气体建立基态能量下界的方法。在本文中,盒子的尺寸大于皮塔耶夫斯基总长度尺度。该演示包括二维和三维情况,并捕捉到二阶校正,即李-黄-杨项。在这种长度尺度的盒子上进行计算是计算热力学极限下能量的主要步骤。然而,与热力学情况下的局部问题相比,周期边界条件大大简化了论证的许多步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds on the energy of the Bose gas
We present an overview of the approach to establish a lower bound to the ground state energy for the dilute, interacting Bose gas in a periodic box. In this paper the size of the box is larger than the Gross-Pitaevski length scale. The presentation includes both the 2 and 3 dimensional cases, and catches the second order correction, i.e. the Lee-Huang-Yang term. The calculation on a box of this length scale is the main step to calculate the energy in the thermodynamic limit. However, the periodic boundary condition simplifies many steps of the argument considerably compared to the localized problem coming from the thermodynamic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信