分次K-理论、滤波K-理论与图代数的分类

IF 0.5 Q3 MATHEMATICS
P. Ara, R. Hazrat, Huanhuan Li
{"title":"分次K-理论、滤波K-理论与图代数的分类","authors":"P. Ara, R. Hazrat, Huanhuan Li","doi":"10.2140/akt.2022.7.731","DOIUrl":null,"url":null,"abstract":"We prove that an isomorphism of graded Grothendieck groups $K^{gr}_0$ of two Leavitt path algebras induces an isomorphism of their algebraic filtered $K$-theory and consequently an isomorphism of filtered $K$-theory of their associated graph $C^*$-algebras. As an application, we show that, since for a finite graph $E$ with no sinks, $K^{gr}_0(L(E))$ of the Leavitt path algebra $L(E)$ coincides with Krieger's dimension group of its adjacency matrix $A_E$, our result relates the shift equivalence of graphs to the filtered $K$-theory and consequently gives that two arbitrary shift equivalent matrices give stably isomorphic graph $C^*$-algebras. This result was only known for irreducible graphs.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graded K-theory, filtered K-theory and the\\nclassification of graph algebras\",\"authors\":\"P. Ara, R. Hazrat, Huanhuan Li\",\"doi\":\"10.2140/akt.2022.7.731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that an isomorphism of graded Grothendieck groups $K^{gr}_0$ of two Leavitt path algebras induces an isomorphism of their algebraic filtered $K$-theory and consequently an isomorphism of filtered $K$-theory of their associated graph $C^*$-algebras. As an application, we show that, since for a finite graph $E$ with no sinks, $K^{gr}_0(L(E))$ of the Leavitt path algebra $L(E)$ coincides with Krieger's dimension group of its adjacency matrix $A_E$, our result relates the shift equivalence of graphs to the filtered $K$-theory and consequently gives that two arbitrary shift equivalent matrices give stably isomorphic graph $C^*$-algebras. This result was only known for irreducible graphs.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2022.7.731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

证明了两个Leavitt路径代数的梯度Grothendieck群$K^{gr}_0$的同构可以导出它们的代数滤波$K$-理论的同构,从而可以导出它们的关联图$C^*$-代数的滤波$K$-理论的同构。作为一个应用,我们证明了由于对于无汇的有限图$E$, Leavitt路径代数$L(E)$的$K^{gr}_0(L(E))$与它的邻接矩阵$A_E$的Krieger维群一致,我们的结果将图的移位等价与过滤的$K$-理论联系起来,从而给出了两个任意移位等价矩阵给出稳定同构图$C^*$-代数。这个结果只适用于不可约图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graded K-theory, filtered K-theory and the classification of graph algebras
We prove that an isomorphism of graded Grothendieck groups $K^{gr}_0$ of two Leavitt path algebras induces an isomorphism of their algebraic filtered $K$-theory and consequently an isomorphism of filtered $K$-theory of their associated graph $C^*$-algebras. As an application, we show that, since for a finite graph $E$ with no sinks, $K^{gr}_0(L(E))$ of the Leavitt path algebra $L(E)$ coincides with Krieger's dimension group of its adjacency matrix $A_E$, our result relates the shift equivalence of graphs to the filtered $K$-theory and consequently gives that two arbitrary shift equivalent matrices give stably isomorphic graph $C^*$-algebras. This result was only known for irreducible graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信