{"title":"基于P[Y]估计的排序集抽样","authors":"Marwa K. H. Hassan","doi":"10.1108/ijqrm-06-2021-0166","DOIUrl":null,"url":null,"abstract":"PurposeDistribution. The purpose of this study is to obtain the modified maximum likelihood estimator of stress–strength model using the ranked set sampling, to obtain the asymptotic and bootstrap confidence interval of P[Y < X], to compare the performance of author’s estimates with the estimates under simple random sampling and to apply author’s estimates on head and neck cancer.Design/methodology/approachThe maximum likelihood estimator of R = P[Y < X], where X and Y are two independent inverse Weibull random variables common shape parameter that affect the shape of the distribution, and different scale parameters that have an effect on the distribution dispersion are given under ranked set sampling. Together with the asymptotic and bootstrap confidence interval, Monte Carlo simulation shows that this estimator performs better than the estimator under simple random sampling. Also, the asymptotic and bootstrap confidence interval under ranked set sampling is better than these interval estimators under simple random sampling. The application to head and neck cancer disease data shows that the estimator of R = P[Y < X] that shows the treatment with radiotherapy is more efficient than the treatment with a combined radiotherapy and chemotherapy under ranked set sampling that is better than these estimators under simple random sampling.FindingsThe ranked set sampling is more effective than the simple random sampling for the inference of stress-strength model based on inverse Weibull distribution.Originality/valueThis study sheds light on the author’s estimates on head and neck cancer.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ranked set sampling on estimation of P[Y\",\"authors\":\"Marwa K. H. Hassan\",\"doi\":\"10.1108/ijqrm-06-2021-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeDistribution. The purpose of this study is to obtain the modified maximum likelihood estimator of stress–strength model using the ranked set sampling, to obtain the asymptotic and bootstrap confidence interval of P[Y < X], to compare the performance of author’s estimates with the estimates under simple random sampling and to apply author’s estimates on head and neck cancer.Design/methodology/approachThe maximum likelihood estimator of R = P[Y < X], where X and Y are two independent inverse Weibull random variables common shape parameter that affect the shape of the distribution, and different scale parameters that have an effect on the distribution dispersion are given under ranked set sampling. Together with the asymptotic and bootstrap confidence interval, Monte Carlo simulation shows that this estimator performs better than the estimator under simple random sampling. Also, the asymptotic and bootstrap confidence interval under ranked set sampling is better than these interval estimators under simple random sampling. The application to head and neck cancer disease data shows that the estimator of R = P[Y < X] that shows the treatment with radiotherapy is more efficient than the treatment with a combined radiotherapy and chemotherapy under ranked set sampling that is better than these estimators under simple random sampling.FindingsThe ranked set sampling is more effective than the simple random sampling for the inference of stress-strength model based on inverse Weibull distribution.Originality/valueThis study sheds light on the author’s estimates on head and neck cancer.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-06-2021-0166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-06-2021-0166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
PurposeDistribution. The purpose of this study is to obtain the modified maximum likelihood estimator of stress–strength model using the ranked set sampling, to obtain the asymptotic and bootstrap confidence interval of P[Y < X], to compare the performance of author’s estimates with the estimates under simple random sampling and to apply author’s estimates on head and neck cancer.Design/methodology/approachThe maximum likelihood estimator of R = P[Y < X], where X and Y are two independent inverse Weibull random variables common shape parameter that affect the shape of the distribution, and different scale parameters that have an effect on the distribution dispersion are given under ranked set sampling. Together with the asymptotic and bootstrap confidence interval, Monte Carlo simulation shows that this estimator performs better than the estimator under simple random sampling. Also, the asymptotic and bootstrap confidence interval under ranked set sampling is better than these interval estimators under simple random sampling. The application to head and neck cancer disease data shows that the estimator of R = P[Y < X] that shows the treatment with radiotherapy is more efficient than the treatment with a combined radiotherapy and chemotherapy under ranked set sampling that is better than these estimators under simple random sampling.FindingsThe ranked set sampling is more effective than the simple random sampling for the inference of stress-strength model based on inverse Weibull distribution.Originality/valueThis study sheds light on the author’s estimates on head and neck cancer.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining