非对称前进箭头矩阵的奇异值逆问题

IF 1.1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
F. Fathi, M. A. Fariborzi Araghi, S. A. Shahzadeh Fazeli
{"title":"非对称前进箭头矩阵的奇异值逆问题","authors":"F. Fathi, M. A. Fariborzi Araghi, S. A. Shahzadeh Fazeli","doi":"10.1080/17415977.2021.1902515","DOIUrl":null,"url":null,"abstract":"ABSTRACT Constructing a matrix by its spectral information including singular values is called inverse singular value problem (ISVP). In this paper, an ISVP for nonsymmetric ahead arrow matrix by two eigenpairs of the required matrix and one singular value of each leading principal submatrices is investigated. To solve the problem, the recurrence relation of characteristic polynomial of the block Jordan–Weilant matrix associated with the aim matrix is obtained. The conditions of solvability of the problem are derived. Finally a numerical algorithm and an example are given.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2085 - 2097"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1902515","citationCount":"1","resultStr":"{\"title\":\"Inverse singular value problem for nonsymmetric ahead arrow matrix\",\"authors\":\"F. Fathi, M. A. Fariborzi Araghi, S. A. Shahzadeh Fazeli\",\"doi\":\"10.1080/17415977.2021.1902515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Constructing a matrix by its spectral information including singular values is called inverse singular value problem (ISVP). In this paper, an ISVP for nonsymmetric ahead arrow matrix by two eigenpairs of the required matrix and one singular value of each leading principal submatrices is investigated. To solve the problem, the recurrence relation of characteristic polynomial of the block Jordan–Weilant matrix associated with the aim matrix is obtained. The conditions of solvability of the problem are derived. Finally a numerical algorithm and an example are given.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"2085 - 2097\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1902515\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1902515\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1902515","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

利用包含奇异值的谱信息构造矩阵称为逆奇异值问题。本文研究了由所需矩阵的两个本征对和每个前导主子矩阵的一个奇异值组成的非对称前矢矩阵的ISVP。为了解决这个问题,得到了块Jordan–Weilant矩阵的特征多项式与目标矩阵的递推关系。导出了该问题可解的条件。最后给出了一个数值算法和算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse singular value problem for nonsymmetric ahead arrow matrix
ABSTRACT Constructing a matrix by its spectral information including singular values is called inverse singular value problem (ISVP). In this paper, an ISVP for nonsymmetric ahead arrow matrix by two eigenpairs of the required matrix and one singular value of each leading principal submatrices is investigated. To solve the problem, the recurrence relation of characteristic polynomial of the block Jordan–Weilant matrix associated with the aim matrix is obtained. The conditions of solvability of the problem are derived. Finally a numerical algorithm and an example are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering 工程技术-工程:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome. Topics include: -Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks). -Material properties: determination of physical properties of media. -Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.). -Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.). -Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信