如何解剖布偶:变压器嵌入空间的结构

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Timothee Mickus, Denis Paperno, Mathieu Constant
{"title":"如何解剖布偶:变压器嵌入空间的结构","authors":"Timothee Mickus, Denis Paperno, Mathieu Constant","doi":"10.1162/tacl_a_00501","DOIUrl":null,"url":null,"abstract":"Abstract Pretrained embeddings based on the Transformer architecture have taken the NLP community by storm. We show that they can mathematically be reframed as a sum of vector factors and showcase how to use this reframing to study the impact of each component. We provide evidence that multi-head attentions and feed-forwards are not equally useful in all downstream applications, as well as a quantitative overview of the effects of finetuning on the overall embedding space. This approach allows us to draw connections to a wide range of previous studies, from vector space anisotropy to attention weights.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"10 1","pages":"981-996"},"PeriodicalIF":4.2000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"How to Dissect a Muppet: The Structure of Transformer Embedding Spaces\",\"authors\":\"Timothee Mickus, Denis Paperno, Mathieu Constant\",\"doi\":\"10.1162/tacl_a_00501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pretrained embeddings based on the Transformer architecture have taken the NLP community by storm. We show that they can mathematically be reframed as a sum of vector factors and showcase how to use this reframing to study the impact of each component. We provide evidence that multi-head attentions and feed-forwards are not equally useful in all downstream applications, as well as a quantitative overview of the effects of finetuning on the overall embedding space. This approach allows us to draw connections to a wide range of previous studies, from vector space anisotropy to attention weights.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"10 1\",\"pages\":\"981-996\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00501\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00501","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

摘要

基于Transformer架构的预训练嵌入在NLP社区掀起了一股风暴。我们展示了它们可以在数学上被重构为矢量因素的总和,并展示了如何使用这种重构来研究每个组件的影响。我们提供的证据表明,多头关注和前馈在所有下游应用中并不同样有用,以及微调对整个嵌入空间的影响的定量概述。这种方法使我们能够与以前的广泛研究建立联系,从向量空间各向异性到注意力权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Dissect a Muppet: The Structure of Transformer Embedding Spaces
Abstract Pretrained embeddings based on the Transformer architecture have taken the NLP community by storm. We show that they can mathematically be reframed as a sum of vector factors and showcase how to use this reframing to study the impact of each component. We provide evidence that multi-head attentions and feed-forwards are not equally useful in all downstream applications, as well as a quantitative overview of the effects of finetuning on the overall embedding space. This approach allows us to draw connections to a wide range of previous studies, from vector space anisotropy to attention weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信