{"title":"端部夹紧的阶梯夹层梁的有效成形","authors":"K. Magnucki, Joanna Kustosz, D. Goliwąs","doi":"10.2478/ama-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equations was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these beams are performed.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"17 1","pages":"200 - 204"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Shaping of a Stepped Sandwich Beam with Clamped Ends\",\"authors\":\"K. Magnucki, Joanna Kustosz, D. Goliwąs\",\"doi\":\"10.2478/ama-2023-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equations was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these beams are performed.\",\"PeriodicalId\":44942,\"journal\":{\"name\":\"Acta Mechanica et Automatica\",\"volume\":\"17 1\",\"pages\":\"200 - 204\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica et Automatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2023-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effective Shaping of a Stepped Sandwich Beam with Clamped Ends
Abstract The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equations was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these beams are performed.