对比行星际因素以区分极端和主要地磁风暴

IF 2.9 3区 地球科学
Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok
{"title":"对比行星际因素以区分极端和主要地磁风暴","authors":"Ragini Balachandran,&nbsp;Li-Jen Chen,&nbsp;Shan Wang,&nbsp;Mei-Ching Fok","doi":"10.26464/epp2021015","DOIUrl":null,"url":null,"abstract":"<p>We investigate the correlation between Disturbance Storm Time (<i>Dst</i>) characteristics and solar wind conditions for the main phase of geomagnetic storms, seeking possible factors that distinguish extreme storms (minimum <i>Dst</i> &lt;−250 nT) and major storms (minimum <i>Dst</i> &lt;−100 nT). In our analysis of 170 storms, there is a marked correlation between the average rate of change of <i>Dst</i> during a storm's main phase (Δ<i>Dst</i>/Δ<i>t</i>) and the storm's minimum <i>Dst</i>, indicating a faster Δ<i>Dst</i>/Δ<i>t</i> as storm intensity increases. Extreme events add a new regime to Δ<i>Dst</i>/Δ<i>t</i>, the hourly time derivative of <i>Dst</i> (d<i>Dst</i>/d<i>t</i>), and sustained periods of large amplitudes for southward interplanetary magnetic field <i>B<sub>z</sub></i> and solar wind convection electric field <i>E<sub>y</sub></i>. We find that <i>E<sub>y</sub></i> is a less efficient driver of d<i>Dst</i>/d<i>t</i> for extreme storms compared to major storms, even after incorporating the effects of solar wind pressure and ring current decay. When minimum <i>Dst</i> is correlated with minimum <i>B<sub>z</sub></i>, we observe a similar divergence, with extreme storms tending to have more negative <i>Dst</i> than the trend predicted on the basis of major storms. Our results enable further improvements in existing models for storm predictions, including extreme events, based on interplanetary measurements.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"5 2","pages":"180-186"},"PeriodicalIF":2.9000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021015","citationCount":"1","resultStr":"{\"title\":\"Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms\",\"authors\":\"Ragini Balachandran,&nbsp;Li-Jen Chen,&nbsp;Shan Wang,&nbsp;Mei-Ching Fok\",\"doi\":\"10.26464/epp2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the correlation between Disturbance Storm Time (<i>Dst</i>) characteristics and solar wind conditions for the main phase of geomagnetic storms, seeking possible factors that distinguish extreme storms (minimum <i>Dst</i> &lt;−250 nT) and major storms (minimum <i>Dst</i> &lt;−100 nT). In our analysis of 170 storms, there is a marked correlation between the average rate of change of <i>Dst</i> during a storm's main phase (Δ<i>Dst</i>/Δ<i>t</i>) and the storm's minimum <i>Dst</i>, indicating a faster Δ<i>Dst</i>/Δ<i>t</i> as storm intensity increases. Extreme events add a new regime to Δ<i>Dst</i>/Δ<i>t</i>, the hourly time derivative of <i>Dst</i> (d<i>Dst</i>/d<i>t</i>), and sustained periods of large amplitudes for southward interplanetary magnetic field <i>B<sub>z</sub></i> and solar wind convection electric field <i>E<sub>y</sub></i>. We find that <i>E<sub>y</sub></i> is a less efficient driver of d<i>Dst</i>/d<i>t</i> for extreme storms compared to major storms, even after incorporating the effects of solar wind pressure and ring current decay. When minimum <i>Dst</i> is correlated with minimum <i>B<sub>z</sub></i>, we observe a similar divergence, with extreme storms tending to have more negative <i>Dst</i> than the trend predicted on the basis of major storms. Our results enable further improvements in existing models for storm predictions, including extreme events, based on interplanetary measurements.</p>\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"5 2\",\"pages\":\"180-186\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021015\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.26464/epp2021015\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2021015","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了干扰风暴时间(Dst)特征与地磁风暴主阶段太阳风条件之间的相关性,寻找区分极端风暴(最小Dst <−250 nT)和大风暴(最小Dst <−100 nT)的可能因素。在我们对170个风暴的分析中,在风暴主阶段(ΔDst/Δt) Dst的平均变化率与风暴的最小Dst之间存在显著的相关性,表明随着风暴强度的增加,Dst的变化率更快ΔDst/Δt。极端事件增加了ΔDst/Δt、Dst的逐时导数(dDst/dt)和向南行星际磁场Bz和太阳风对流电场Ey的持续大振幅周期。我们发现,与大风暴相比,Ey对极端风暴的dDst/dt的驱动效率较低,即使在考虑了太阳风压力和环电流衰减的影响之后也是如此。当最小Dst与最小Bz相关时,我们观察到类似的发散,极端风暴的负Dst倾向于比基于大风暴预测的趋势更多。我们的研究结果可以进一步改进现有的风暴预测模型,包括基于行星际测量的极端事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms

Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms

We investigate the correlation between Disturbance Storm Time (Dst) characteristics and solar wind conditions for the main phase of geomagnetic storms, seeking possible factors that distinguish extreme storms (minimum Dst <−250 nT) and major storms (minimum Dst <−100 nT). In our analysis of 170 storms, there is a marked correlation between the average rate of change of Dst during a storm's main phase (ΔDstt) and the storm's minimum Dst, indicating a faster ΔDstt as storm intensity increases. Extreme events add a new regime to ΔDstt, the hourly time derivative of Dst (dDst/dt), and sustained periods of large amplitudes for southward interplanetary magnetic field Bz and solar wind convection electric field Ey. We find that Ey is a less efficient driver of dDst/dt for extreme storms compared to major storms, even after incorporating the effects of solar wind pressure and ring current decay. When minimum Dst is correlated with minimum Bz, we observe a similar divergence, with extreme storms tending to have more negative Dst than the trend predicted on the basis of major storms. Our results enable further improvements in existing models for storm predictions, including extreme events, based on interplanetary measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信