Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao
{"title":"疏水有机半导体在水中溶解的柔性芳香两亲三元化","authors":"Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao","doi":"10.1055/a-2037-2786","DOIUrl":null,"url":null,"abstract":"Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"5 1","pages":"84 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flexible Aromatic Amphiphilic Trication for the Solubilization of Hydrophobic Organic Semiconductors in Water\",\"authors\":\"Soujanya H. Goudar, Srinu Kotha, Manya Pal, D. S. Ingle, K. V. Rao\",\"doi\":\"10.1055/a-2037-2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.\",\"PeriodicalId\":93348,\"journal\":{\"name\":\"Organic Materials\",\"volume\":\"5 1\",\"pages\":\"84 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2037-2786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2037-2786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Flexible Aromatic Amphiphilic Trication for the Solubilization of Hydrophobic Organic Semiconductors in Water
Amphiphiles are widely explored for the solubilization of various hydrophobic molecules especially drugs in water. Recently, aromatic amphiphiles emerged as a new class of molecules for the solubilization of hydrophobic organic semiconductors in water. However, the synthesis of these systems involves several steps and often requires the use of expensive metal catalysts. Here we describe the design and synthesis of a new type of flexible aromatic amphiphilic trication (FAT) and its application for solubilization of hydrophobic organic semiconductors in water. FAT has been synthesized in two steps without the use of any expensive metal catalysts. We observed that FAT self-assembles in water into bilayer two dimensional (2D) nanosheets composed of hydrophobic naphthalimide units. FAT is found to be effective for the solubilization of various hydrophobic organic semiconductors such as perylene, perylene diimide (PDI) and C60 in water by encapsulating them into its hydrophobic domains. Moreover, FAT also explored for the solubilization of 2D conjugated ladder polymer, TQBQ in water.