基于矩阵映射的边缘计算数据隐私联合学习算法

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
P. Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, C. L, S. .. Akilandeeswari
{"title":"基于矩阵映射的边缘计算数据隐私联合学习算法","authors":"P. Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, C. L, S. .. Akilandeeswari","doi":"10.1108/ijpcc-03-2022-0113","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to provide the security and privacy for Byzantine clients from different types of attacks.\n\n\nDesign/methodology/approach\nIn this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing.\n\n\nFindings\nBy using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped.\n\n\nOriginality/value\nBy using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Federated learning algorithm based on matrix mapping for data privacy over edge computing\",\"authors\":\"P. Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, C. L, S. .. Akilandeeswari\",\"doi\":\"10.1108/ijpcc-03-2022-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to provide the security and privacy for Byzantine clients from different types of attacks.\\n\\n\\nDesign/methodology/approach\\nIn this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing.\\n\\n\\nFindings\\nBy using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped.\\n\\n\\nOriginality/value\\nBy using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.\\n\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-03-2022-0113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-03-2022-0113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

目的本文旨在为拜占庭客户端提供不同类型攻击的安全性和隐私性。设计/方法论/方法在本文中,作者使用基于矩阵映射的联合学习算法来保护边缘计算上的数据隐私。通过使用Softmax层概率分布,模型拜占庭容忍度可以在阻塞收敛攻击中从40%提高到45%,并且可以阻止边缘后门攻击。独创性/价值通过使用Softmax层概率分布对测试结果进行建模,聚合方法可以保护至少30%的拜占庭客户端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated learning algorithm based on matrix mapping for data privacy over edge computing
Purpose This paper aims to provide the security and privacy for Byzantine clients from different types of attacks. Design/methodology/approach In this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing. Findings By using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped. Originality/value By using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Pervasive Computing and Communications
International Journal of Pervasive Computing and Communications COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信