{"title":"流体填充的多孔纳米结构的热方程","authors":"L. Restuccia, L. Palese, M. T. Caccamo, A. Famà","doi":"10.1478/AAPP.97S2A6","DOIUrl":null,"url":null,"abstract":"In a previous paper, in the framework of extended irreversible thermodynamics with internal variables, a model for nanostructures with thin porous channels filled by a fluid flow was developed. The porous defects of porous channels inside the structure, described by a permeability structure tensor, may have a strong influence on the effective thermal conductivity, and their own dynamics may couple in relevant way to the heat flux dynamics. Here, in the linear case a generalized telegraph heat equation for thermal perturbations with finite velocity is derived in the anisotropic and isotropic case for the nanosystems taken into account. The thermal disturbances are so fast that their frequency becomes of the order of reciprocal of the relaxation time, given, for instance, by the collision time of heat carriers. Furthermore, the complete system of equations describing the behaviour of the media under consideration is worked out and discussed. The obtained results have applications in \"defect engineering\" and an important technological interest.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Heat equation for porous nanostructures filled by a fluid flow\",\"authors\":\"L. Restuccia, L. Palese, M. T. Caccamo, A. Famà\",\"doi\":\"10.1478/AAPP.97S2A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous paper, in the framework of extended irreversible thermodynamics with internal variables, a model for nanostructures with thin porous channels filled by a fluid flow was developed. The porous defects of porous channels inside the structure, described by a permeability structure tensor, may have a strong influence on the effective thermal conductivity, and their own dynamics may couple in relevant way to the heat flux dynamics. Here, in the linear case a generalized telegraph heat equation for thermal perturbations with finite velocity is derived in the anisotropic and isotropic case for the nanosystems taken into account. The thermal disturbances are so fast that their frequency becomes of the order of reciprocal of the relaxation time, given, for instance, by the collision time of heat carriers. Furthermore, the complete system of equations describing the behaviour of the media under consideration is worked out and discussed. The obtained results have applications in \\\"defect engineering\\\" and an important technological interest.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.97S2A6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S2A6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Heat equation for porous nanostructures filled by a fluid flow
In a previous paper, in the framework of extended irreversible thermodynamics with internal variables, a model for nanostructures with thin porous channels filled by a fluid flow was developed. The porous defects of porous channels inside the structure, described by a permeability structure tensor, may have a strong influence on the effective thermal conductivity, and their own dynamics may couple in relevant way to the heat flux dynamics. Here, in the linear case a generalized telegraph heat equation for thermal perturbations with finite velocity is derived in the anisotropic and isotropic case for the nanosystems taken into account. The thermal disturbances are so fast that their frequency becomes of the order of reciprocal of the relaxation time, given, for instance, by the collision time of heat carriers. Furthermore, the complete system of equations describing the behaviour of the media under consideration is worked out and discussed. The obtained results have applications in "defect engineering" and an important technological interest.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.