层状蒸发岩中的盐内结构和应变分配:对地中海东部梅西尼亚盐钻探的启示

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
S. Evans, C. Jackson
{"title":"层状蒸发岩中的盐内结构和应变分配:对地中海东部梅西尼亚盐钻探的启示","authors":"S. Evans, C. Jackson","doi":"10.1144/petgeo2020-072","DOIUrl":null,"url":null,"abstract":"We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intra-salt structure and strain partitioning in layered evaporites: implications for drilling through Messinian salt in the eastern Mediterranean\",\"authors\":\"S. Evans, C. Jackson\",\"doi\":\"10.1144/petgeo2020-072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2020-072\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2020-072","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

我们使用黎巴嫩近海黎凡特边缘的3D地震反射数据来研究梅西尼亚蒸发岩序列的结构演化,以及早期盐构造期间盐内结构和应变在厚盐层内的变化。墨西阶内部反射率揭示了以石盐岩为主的层序中的岩性不均匀性。这导致流变不均匀性,不同单元的不同机械性能控制变形盐层内的应变调节。我们评估了结构的分布和方向,并展示了盐内应变如何沿边缘横向和垂直变化。我们认为,在地震数据中表现出弱应变的单元实际上可能容纳相当大的亚地震应变或隐应变。我们还讨论了盐内应力状态如何随时间和空间变化,以响应驱动变形的重力。我们得出的结论是,在厚的、不均匀的盐中进行有效的钻探需要对盐及其覆盖层的力学和运动学发展有一个全面的了解。这也将使我们能够建立更好的速度模型,考虑盐内岩性和结构的复杂性,以便准确地成像盐下地质结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intra-salt structure and strain partitioning in layered evaporites: implications for drilling through Messinian salt in the eastern Mediterranean
We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信