一类特殊随机脉冲分数阶微分方程温和解的研究

IF 0.4 Q4 MATHEMATICS, APPLIED
Sayooj Aby Jose, Varun Bose C S, Bijesh P Biju, Abin Thomas Nirappathu house
{"title":"一类特殊随机脉冲分数阶微分方程温和解的研究","authors":"Sayooj Aby Jose, Varun Bose C S, Bijesh P Biju, Abin Thomas Nirappathu house","doi":"10.5206/mase/14985","DOIUrl":null,"url":null,"abstract":"In this article, we deal with mild solution of special random impulsive fractional differential equations. Initially, we present the existence of the mild solution via Leray-Schauder fixed point method. After that, we establish the exponential stability of the system. Finally, we give examples to illustrate the effectiveness of the theoretical results.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the mild solution of special random impulsive fractional differential equations\",\"authors\":\"Sayooj Aby Jose, Varun Bose C S, Bijesh P Biju, Abin Thomas Nirappathu house\",\"doi\":\"10.5206/mase/14985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we deal with mild solution of special random impulsive fractional differential equations. Initially, we present the existence of the mild solution via Leray-Schauder fixed point method. After that, we establish the exponential stability of the system. Finally, we give examples to illustrate the effectiveness of the theoretical results.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/14985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类特殊随机脉冲分数阶微分方程的温和解。首先,我们通过Leray Schauder不动点方法给出了温和解的存在性。然后,我们建立了系统的指数稳定性。最后,通过实例说明了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the mild solution of special random impulsive fractional differential equations
In this article, we deal with mild solution of special random impulsive fractional differential equations. Initially, we present the existence of the mild solution via Leray-Schauder fixed point method. After that, we establish the exponential stability of the system. Finally, we give examples to illustrate the effectiveness of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信