{"title":"白血病数据的不同贝叶斯模型的比较","authors":"M. Rafique, Sajid Ali, Ismail Shah, B. Ashraf","doi":"10.1080/01966324.2021.1957730","DOIUrl":null,"url":null,"abstract":"Abstract Different probability models are used to model survival data. However, it is important to know which model describe best the data because if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret and helps in predictions. This article presents the Bayesian censored data modeling assuming Gumbel, double exponential, exponentially modified Gaussian, Weibull, and lognormal distributions as sampling models. In particular, a historical Leukemia data set is used to show the comparison among different models. Markov Chain Monte Carlo (MCMC) methods are used to compute the posterior summaries. Different model selection criteria, like, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), Leave-one-out Cross-Validation (LOOCV), and Watanabe-Akaike Information Criterion (WAIC) are used for model selection. It is observed from the comparative study that the lognormal model has the minimum values of different model selection criteria and considered to be the best for this Leukemia data.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"244 - 258"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1957730","citationCount":"2","resultStr":"{\"title\":\"A Comparison of Different Bayesian Models for Leukemia Data\",\"authors\":\"M. Rafique, Sajid Ali, Ismail Shah, B. Ashraf\",\"doi\":\"10.1080/01966324.2021.1957730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Different probability models are used to model survival data. However, it is important to know which model describe best the data because if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret and helps in predictions. This article presents the Bayesian censored data modeling assuming Gumbel, double exponential, exponentially modified Gaussian, Weibull, and lognormal distributions as sampling models. In particular, a historical Leukemia data set is used to show the comparison among different models. Markov Chain Monte Carlo (MCMC) methods are used to compute the posterior summaries. Different model selection criteria, like, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), Leave-one-out Cross-Validation (LOOCV), and Watanabe-Akaike Information Criterion (WAIC) are used for model selection. It is observed from the comparative study that the lognormal model has the minimum values of different model selection criteria and considered to be the best for this Leukemia data.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"244 - 258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1957730\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1957730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1957730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
A Comparison of Different Bayesian Models for Leukemia Data
Abstract Different probability models are used to model survival data. However, it is important to know which model describe best the data because if the assumptions for parametric methods hold, the resulting estimates have smaller standard errors and are easier to interpret and helps in predictions. This article presents the Bayesian censored data modeling assuming Gumbel, double exponential, exponentially modified Gaussian, Weibull, and lognormal distributions as sampling models. In particular, a historical Leukemia data set is used to show the comparison among different models. Markov Chain Monte Carlo (MCMC) methods are used to compute the posterior summaries. Different model selection criteria, like, Akaike Information Criterion (AIC), Deviance Information Criterion (DIC), Leave-one-out Cross-Validation (LOOCV), and Watanabe-Akaike Information Criterion (WAIC) are used for model selection. It is observed from the comparative study that the lognormal model has the minimum values of different model selection criteria and considered to be the best for this Leukemia data.