{"title":"乐器音调相关指向性模式的感知意义","authors":"Andrea Corcuera, V. Chatziioannou, J. Ahrens","doi":"10.17743/jaes.2022.0076","DOIUrl":null,"url":null,"abstract":"Musical instruments are complex sound sources that exhibit directivity patterns that not only vary depending on the frequency, but can also change as a function of the played tone. It is yet unclear whether the directivity variation as a function of the played tone leads to a perceptible difference compared to an auralization that uses an averaged directivity pattern. This paper examines the directivity of 38 musical instruments from a publicly available database and then selects three representative instruments among those with similar radiation characteristics (oboe, violin, and trumpet). To evaluate the listeners’ ability to perceive a difference between auralizations of virtual environments using tone-dependent and averaged directivities, a listening test was conducted using the directivity patterns of the three selected instruments in both anechoic and reverberant conditions. The results show that, in anechoic conditions, listeners can reliably detect differences between the tone-dependent and averaged directivities for the oboe but not for the violin or the trumpet. Nevertheless, in reverberant conditions, listeners can distinguish tone-dependent directivity from averaged directivity for all instruments under study.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perceptual Significance of Tone-Dependent Directivity Patterns of Musical Instruments\",\"authors\":\"Andrea Corcuera, V. Chatziioannou, J. Ahrens\",\"doi\":\"10.17743/jaes.2022.0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Musical instruments are complex sound sources that exhibit directivity patterns that not only vary depending on the frequency, but can also change as a function of the played tone. It is yet unclear whether the directivity variation as a function of the played tone leads to a perceptible difference compared to an auralization that uses an averaged directivity pattern. This paper examines the directivity of 38 musical instruments from a publicly available database and then selects three representative instruments among those with similar radiation characteristics (oboe, violin, and trumpet). To evaluate the listeners’ ability to perceive a difference between auralizations of virtual environments using tone-dependent and averaged directivities, a listening test was conducted using the directivity patterns of the three selected instruments in both anechoic and reverberant conditions. The results show that, in anechoic conditions, listeners can reliably detect differences between the tone-dependent and averaged directivities for the oboe but not for the violin or the trumpet. Nevertheless, in reverberant conditions, listeners can distinguish tone-dependent directivity from averaged directivity for all instruments under study.\",\"PeriodicalId\":50008,\"journal\":{\"name\":\"Journal of the Audio Engineering Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Audio Engineering Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17743/jaes.2022.0076\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Perceptual Significance of Tone-Dependent Directivity Patterns of Musical Instruments
Musical instruments are complex sound sources that exhibit directivity patterns that not only vary depending on the frequency, but can also change as a function of the played tone. It is yet unclear whether the directivity variation as a function of the played tone leads to a perceptible difference compared to an auralization that uses an averaged directivity pattern. This paper examines the directivity of 38 musical instruments from a publicly available database and then selects three representative instruments among those with similar radiation characteristics (oboe, violin, and trumpet). To evaluate the listeners’ ability to perceive a difference between auralizations of virtual environments using tone-dependent and averaged directivities, a listening test was conducted using the directivity patterns of the three selected instruments in both anechoic and reverberant conditions. The results show that, in anechoic conditions, listeners can reliably detect differences between the tone-dependent and averaged directivities for the oboe but not for the violin or the trumpet. Nevertheless, in reverberant conditions, listeners can distinguish tone-dependent directivity from averaged directivity for all instruments under study.
期刊介绍:
The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers.
The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.