具有平方反比势的薛定谔算子生成的半群的变异算子

IF 2 2区 数学 Q1 MATHEMATICS
V'ictor Almeida, J. Betancor, L. Rodr'iguez-Mesa
{"title":"具有平方反比势的薛定谔算子生成的半群的变异算子","authors":"V'ictor Almeida, J. Betancor, L. Rodr'iguez-Mesa","doi":"10.1142/s0219530522500038","DOIUrl":null,"url":null,"abstract":"By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \\ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variation Operators Associated with the Semigroups Generated by Schrodinger Operators with Inverse Square Potentials\",\"authors\":\"V'ictor Almeida, J. Betancor, L. Rodr'iguez-Mesa\",\"doi\":\"10.1142/s0219530522500038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \\\\ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500038\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们用{T T} T >0表示由Schrödinger算子的friedrichhs扩展生成的算子半群,该算子具有平方逆势La = -∆+ a |x|2,定义在C∞C (R n \{0})中。本文建立了与{t∂t ta t}t>0相关的极大算子、变分算子、振荡算子和跳跃算子的加权l不等式,其中α≥0,∂α t表示Weyl分数阶导数。当a≥0和−(n−2)24 < a < 0时,p的取值范围不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation Operators Associated with the Semigroups Generated by Schrodinger Operators with Inverse Square Potentials
By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信