{"title":"具有平方反比势的薛定谔算子生成的半群的变异算子","authors":"V'ictor Almeida, J. Betancor, L. Rodr'iguez-Mesa","doi":"10.1142/s0219530522500038","DOIUrl":null,"url":null,"abstract":"By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \\ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variation Operators Associated with the Semigroups Generated by Schrodinger Operators with Inverse Square Potentials\",\"authors\":\"V'ictor Almeida, J. Betancor, L. Rodr'iguez-Mesa\",\"doi\":\"10.1142/s0219530522500038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \\\\ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500038\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
我们用{T T} T >0表示由Schrödinger算子的friedrichhs扩展生成的算子半群,该算子具有平方逆势La = -∆+ a |x|2,定义在C∞C (R n \{0})中。本文建立了与{t∂t ta t}t>0相关的极大算子、变分算子、振荡算子和跳跃算子的加权l不等式,其中α≥0,∂α t表示Weyl分数阶导数。当a≥0和−(n−2)24 < a < 0时,p的取值范围不同。
Variation Operators Associated with the Semigroups Generated by Schrodinger Operators with Inverse Square Potentials
By {T t }t>0 we denote the semigroup of operators generated by the Friedrichs extension of the Schrödinger operator with the inverse square potential La = −∆+ a |x|2 defined in C∞ c (R n \ {0}). In this paper we establish weighted L-inequalities for the maximal, variation, oscillation and jump operators associated with {t∂ t T a t }t>0, where α ≥ 0 and ∂ α t denotes the Weyl fractional derivative. The range of values p that works is different when a ≥ 0 and when − (n−2) 2 4 < a < 0.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.