{"title":"关于相对对偶Baer性质的一些结果","authors":"T. Amouzegar, R. Tribak","doi":"10.13069/jacodesmath.790751","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring. In this article, we introduce and study relative dual Baer property. We characterize $R$-modules $M$ which are $R_R$-dual Baer, where $R$ is a commutative principal ideal domain. It is shown that over a right noetherian right hereditary ring $R$, an $R$-module $M$ is $N$-dual Baer for all $R$-modules $N$ if and only if $M$ is an injective $R$-module. It is also shown that for $R$-modules $M_1$, $M_2$, $\\ldots$, $M_n$ such that $M_i$ is $M_j$-projective for all $i > j \\in \\{1,2,\\ldots, n\\}$, an $R$-module $N$ is $\\bigoplus_{i=1}^nM_i$-dual Baer if and only if $N$ is $M_i$-dual Baer for all $i\\in \\{1,2,\\ldots,n\\}$. We prove that an $R$-module $M$ is dual Baer if and only if $S=End_R(M)$ is a Baer ring and $IM=r_M(l_S(IM))$ for every right ideal $I$ of $S$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on relative dual Baer property\",\"authors\":\"T. Amouzegar, R. Tribak\",\"doi\":\"10.13069/jacodesmath.790751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring. In this article, we introduce and study relative dual Baer property. We characterize $R$-modules $M$ which are $R_R$-dual Baer, where $R$ is a commutative principal ideal domain. It is shown that over a right noetherian right hereditary ring $R$, an $R$-module $M$ is $N$-dual Baer for all $R$-modules $N$ if and only if $M$ is an injective $R$-module. It is also shown that for $R$-modules $M_1$, $M_2$, $\\\\ldots$, $M_n$ such that $M_i$ is $M_j$-projective for all $i > j \\\\in \\\\{1,2,\\\\ldots, n\\\\}$, an $R$-module $N$ is $\\\\bigoplus_{i=1}^nM_i$-dual Baer if and only if $N$ is $M_i$-dual Baer for all $i\\\\in \\\\{1,2,\\\\ldots,n\\\\}$. We prove that an $R$-module $M$ is dual Baer if and only if $S=End_R(M)$ is a Baer ring and $IM=r_M(l_S(IM))$ for every right ideal $I$ of $S$.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/jacodesmath.790751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.790751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Let $R$ be a ring. In this article, we introduce and study relative dual Baer property. We characterize $R$-modules $M$ which are $R_R$-dual Baer, where $R$ is a commutative principal ideal domain. It is shown that over a right noetherian right hereditary ring $R$, an $R$-module $M$ is $N$-dual Baer for all $R$-modules $N$ if and only if $M$ is an injective $R$-module. It is also shown that for $R$-modules $M_1$, $M_2$, $\ldots$, $M_n$ such that $M_i$ is $M_j$-projective for all $i > j \in \{1,2,\ldots, n\}$, an $R$-module $N$ is $\bigoplus_{i=1}^nM_i$-dual Baer if and only if $N$ is $M_i$-dual Baer for all $i\in \{1,2,\ldots,n\}$. We prove that an $R$-module $M$ is dual Baer if and only if $S=End_R(M)$ is a Baer ring and $IM=r_M(l_S(IM))$ for every right ideal $I$ of $S$.