时滞中性粒细胞模型的周期振荡

Suqi Ma
{"title":"时滞中性粒细胞模型的周期振荡","authors":"Suqi Ma","doi":"10.4236/IJMNTA.2017.64011","DOIUrl":null,"url":null,"abstract":"To understand dynamical characters of neutrophil dynamical behavior, the sensitivity of delay factors which has effects on system dynamic behavior is ubiquitous due to system’s highly nonlinearity. Here we prove that delay supports a subcritical Hopf bifurcation, underlying a feedback mechanism during stem cells proliferation process while changing its coefficient of amplification. The given cell model reproduces a bistable dynamic regime of blood cells and hysteresis. Applying multiple scale method, oscillation motion near Hopf point is discussed. The stability limit of steady state to be abruptly periodic solution is detected.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"06 1","pages":"119-133"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Periodic Oscillation in Neutrophil Models with Time Delays\",\"authors\":\"Suqi Ma\",\"doi\":\"10.4236/IJMNTA.2017.64011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand dynamical characters of neutrophil dynamical behavior, the sensitivity of delay factors which has effects on system dynamic behavior is ubiquitous due to system’s highly nonlinearity. Here we prove that delay supports a subcritical Hopf bifurcation, underlying a feedback mechanism during stem cells proliferation process while changing its coefficient of amplification. The given cell model reproduces a bistable dynamic regime of blood cells and hysteresis. Applying multiple scale method, oscillation motion near Hopf point is discussed. The stability limit of steady state to be abruptly periodic solution is detected.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"06 1\",\"pages\":\"119-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2017.64011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2017.64011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了了解中性粒细胞动力学行为的动力学特性,由于系统的高度非线性,影响系统动力学行为的延迟因素的敏感性是普遍存在的。在这里,我们证明延迟支持亚临界Hopf分岔,在干细胞增殖过程中潜在的反馈机制,同时改变其放大系数。给定的细胞模型再现了血细胞和迟滞的双稳态动态状态。应用多尺度法,讨论了Hopf点附近的振荡运动。检测了稳态为突发性周期解的稳定性极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Oscillation in Neutrophil Models with Time Delays
To understand dynamical characters of neutrophil dynamical behavior, the sensitivity of delay factors which has effects on system dynamic behavior is ubiquitous due to system’s highly nonlinearity. Here we prove that delay supports a subcritical Hopf bifurcation, underlying a feedback mechanism during stem cells proliferation process while changing its coefficient of amplification. The given cell model reproduces a bistable dynamic regime of blood cells and hysteresis. Applying multiple scale method, oscillation motion near Hopf point is discussed. The stability limit of steady state to be abruptly periodic solution is detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信