关于爱因斯坦N(k)-接触度量流形

IF 0.4 Q4 MATHEMATICS
S. Yadav, Xiaomin Chen
{"title":"关于爱因斯坦N(k)-接触度量流形","authors":"S. Yadav, Xiaomin Chen","doi":"10.5269/bspm.46872","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to characterize eta-Einstein N(k)-contact metric manifolds admits eta-Ricci soliton. Several consequences of this result are discussed. Beside these, we also study eta-Einstein N(k)-contact metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) Sn(4) or a Sasakian manifold. Finally, we construct an example to verify some results.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On eta-Einstein N(k)-contact metric manifolds\",\"authors\":\"S. Yadav, Xiaomin Chen\",\"doi\":\"10.5269/bspm.46872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to characterize eta-Einstein N(k)-contact metric manifolds admits eta-Ricci soliton. Several consequences of this result are discussed. Beside these, we also study eta-Einstein N(k)-contact metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) Sn(4) or a Sasakian manifold. Finally, we construct an example to verify some results.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.46872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.46872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是表征容许ricci孤子的爱因斯坦N(k)-接触度量流形。讨论了这一结果的几个后果。除此之外,我们还研究了满足一定曲率条件的-爱因斯坦N(k)-接触度量流形。其中证明了这样的流形或局部等距黎曼积En+1(0) Sn(4)或Sasakian流形。最后,我们构造了一个例子来验证一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On eta-Einstein N(k)-contact metric manifolds
The aim of this paper is to characterize eta-Einstein N(k)-contact metric manifolds admits eta-Ricci soliton. Several consequences of this result are discussed. Beside these, we also study eta-Einstein N(k)-contact metric manifolds satisfying certain curvature conditions. Among others it is shown that such a manifold is either locally isometric to the Riemannian product En+1(0) Sn(4) or a Sasakian manifold. Finally, we construct an example to verify some results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信