Yong He, H. Wei, S. Liu, Y. Xu, Z. Y. Zhu, H. Yan, J. X. Li, Z. Tian
{"title":"氧化石墨烯对水稻幼苗生长的影响及其基因型变异","authors":"Yong He, H. Wei, S. Liu, Y. Xu, Z. Y. Zhu, H. Yan, J. X. Li, Z. Tian","doi":"10.32615/BP.2020.124","DOIUrl":null,"url":null,"abstract":"With the extensive utilization of graphene nanomaterials, they inevitably enter our environment. The potential phytotoxicity and environmental impact of graphene oxide (GO) have recently attracted much attention. We designed the experiment based on seed germination, seedling morphology, physio-biochemical properties, and antioxidant enzyme activities of five rice genotypes (9311, MH63, R527, K866, and Nipponbare) under six concentrations of GO (0, 5, 10, 50, 100, and 150 mg dm-3). We studied the effects of different concentrations of GO on germination index (GI), shoot length (SL) and root length (RL), adventitious root number, shoot and root fresh masses, root/shoot ratio, chlorophyll (Chl) content, malondialdehyde content, and activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Graphene oxide treatments significantly enhanced seed germination and root growth and inhibited shoot growth of all genotypes. Furthermore, we found a significant genotype-dependent response to GO treatments. According to the relative increment trend of GI, SL, and RL, root/shoot ratio, antioxidant enzyme activities (CAT, POD, and SOD), and Chl content, ‘R527’ showed more tolerance to GO treatments than the other four genotypes. The ‘MH63’ and ‘K866’ were more sensitive than ‘Nipponbare’ and ‘9311’. It indicates that the GO-tolerant genotype might avoid free radicals damage from GO by increased antioxidant enzyme activities. Moreover, we should consider the genotype differences when evaluating the potential phytotoxicity of GO and environmental risk to ecosystems.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"39-46"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Growth response of Oryza sativa seedlings to graphene oxide and its variability among genotypes\",\"authors\":\"Yong He, H. Wei, S. Liu, Y. Xu, Z. Y. Zhu, H. Yan, J. X. Li, Z. Tian\",\"doi\":\"10.32615/BP.2020.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the extensive utilization of graphene nanomaterials, they inevitably enter our environment. The potential phytotoxicity and environmental impact of graphene oxide (GO) have recently attracted much attention. We designed the experiment based on seed germination, seedling morphology, physio-biochemical properties, and antioxidant enzyme activities of five rice genotypes (9311, MH63, R527, K866, and Nipponbare) under six concentrations of GO (0, 5, 10, 50, 100, and 150 mg dm-3). We studied the effects of different concentrations of GO on germination index (GI), shoot length (SL) and root length (RL), adventitious root number, shoot and root fresh masses, root/shoot ratio, chlorophyll (Chl) content, malondialdehyde content, and activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Graphene oxide treatments significantly enhanced seed germination and root growth and inhibited shoot growth of all genotypes. Furthermore, we found a significant genotype-dependent response to GO treatments. According to the relative increment trend of GI, SL, and RL, root/shoot ratio, antioxidant enzyme activities (CAT, POD, and SOD), and Chl content, ‘R527’ showed more tolerance to GO treatments than the other four genotypes. The ‘MH63’ and ‘K866’ were more sensitive than ‘Nipponbare’ and ‘9311’. It indicates that the GO-tolerant genotype might avoid free radicals damage from GO by increased antioxidant enzyme activities. Moreover, we should consider the genotype differences when evaluating the potential phytotoxicity of GO and environmental risk to ecosystems.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"65 1\",\"pages\":\"39-46\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2020.124\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Growth response of Oryza sativa seedlings to graphene oxide and its variability among genotypes
With the extensive utilization of graphene nanomaterials, they inevitably enter our environment. The potential phytotoxicity and environmental impact of graphene oxide (GO) have recently attracted much attention. We designed the experiment based on seed germination, seedling morphology, physio-biochemical properties, and antioxidant enzyme activities of five rice genotypes (9311, MH63, R527, K866, and Nipponbare) under six concentrations of GO (0, 5, 10, 50, 100, and 150 mg dm-3). We studied the effects of different concentrations of GO on germination index (GI), shoot length (SL) and root length (RL), adventitious root number, shoot and root fresh masses, root/shoot ratio, chlorophyll (Chl) content, malondialdehyde content, and activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Graphene oxide treatments significantly enhanced seed germination and root growth and inhibited shoot growth of all genotypes. Furthermore, we found a significant genotype-dependent response to GO treatments. According to the relative increment trend of GI, SL, and RL, root/shoot ratio, antioxidant enzyme activities (CAT, POD, and SOD), and Chl content, ‘R527’ showed more tolerance to GO treatments than the other four genotypes. The ‘MH63’ and ‘K866’ were more sensitive than ‘Nipponbare’ and ‘9311’. It indicates that the GO-tolerant genotype might avoid free radicals damage from GO by increased antioxidant enzyme activities. Moreover, we should consider the genotype differences when evaluating the potential phytotoxicity of GO and environmental risk to ecosystems.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.