关于椭圆曲线上扭转的概率局部全局原理

Pub Date : 2020-05-13 DOI:10.5802/jtnb.1193
J. Cullinan, Meagan Kenney, J. Voight
{"title":"关于椭圆曲线上扭转的概率局部全局原理","authors":"J. Cullinan, Meagan Kenney, J. Voight","doi":"10.5802/jtnb.1193","DOIUrl":null,"url":null,"abstract":"Let $m$ be a positive integer and let $E$ be an elliptic curve over $\\mathbb{Q}$ with the property that $m\\mid\\#E(\\mathbb{F}_p)$ for a density $1$ set of primes $p$. Building upon work of Katz and Harron-Snowden, we study the probability that $m$ divides the the order of the torsion subgroup of $E(\\mathbb{Q})$: we find it is nonzero for all $m \\in \\{ 1, 2, \\dots, 10, 12, 16\\}$ and we compute it exactly when $m \\in \\{ 1,2,3,4,5,7 \\}$. As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve is torsion free of genus zero.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On a probabilistic local-global principle for torsion on elliptic curves\",\"authors\":\"J. Cullinan, Meagan Kenney, J. Voight\",\"doi\":\"10.5802/jtnb.1193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $m$ be a positive integer and let $E$ be an elliptic curve over $\\\\mathbb{Q}$ with the property that $m\\\\mid\\\\#E(\\\\mathbb{F}_p)$ for a density $1$ set of primes $p$. Building upon work of Katz and Harron-Snowden, we study the probability that $m$ divides the the order of the torsion subgroup of $E(\\\\mathbb{Q})$: we find it is nonzero for all $m \\\\in \\\\{ 1, 2, \\\\dots, 10, 12, 16\\\\}$ and we compute it exactly when $m \\\\in \\\\{ 1,2,3,4,5,7 \\\\}$. As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve is torsion free of genus zero.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

设$m$是正整数,设$E$是$\mathbb{Q}$上的椭圆曲线,其性质为$m\maid\#E(\mathbb{F}_p)对于密度为$1$的素数集$p$。在Katz和Harron Snowden工作的基础上,我们研究了$m$除以$E(\mathbb{Q})$的扭子群阶的概率:我们发现它对于所有$m\in\{1,2,\dots,10,12,16\}$都是非零的,并且当$m\in \{1,2,3,4,5,7\}$。作为补充,我们给出了当参数化模曲线不受亏格零的扭曲时,具有额外级别结构的椭圆曲线的渐近计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a probabilistic local-global principle for torsion on elliptic curves
Let $m$ be a positive integer and let $E$ be an elliptic curve over $\mathbb{Q}$ with the property that $m\mid\#E(\mathbb{F}_p)$ for a density $1$ set of primes $p$. Building upon work of Katz and Harron-Snowden, we study the probability that $m$ divides the the order of the torsion subgroup of $E(\mathbb{Q})$: we find it is nonzero for all $m \in \{ 1, 2, \dots, 10, 12, 16\}$ and we compute it exactly when $m \in \{ 1,2,3,4,5,7 \}$. As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve is torsion free of genus zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信