有限域上方阵的行列式多项式和基多项式

Q2 Mathematics
E. Ballico
{"title":"有限域上方阵的行列式多项式和基多项式","authors":"E. Ballico","doi":"10.1108/ajms-10-2022-0242","DOIUrl":null,"url":null,"abstract":"PurposeThe author studies forms over finite fields obtained as the determinant of Hermitian matrices and use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.Design/methodology/approachThe authors give full proofs for the new results, quoting previous works by other authors in the proofs. In the introduction, the authors quoted related references.FindingsThe authors get a few theorems, mainly describing some monic polynomial arising as a base polynomial of a square matrix.Originality/valueAs far as the author knows, all the results are new, and the approach is also new.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinantal polynomials and the base polynomial of a square matrix over a finite field\",\"authors\":\"E. Ballico\",\"doi\":\"10.1108/ajms-10-2022-0242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe author studies forms over finite fields obtained as the determinant of Hermitian matrices and use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.Design/methodology/approachThe authors give full proofs for the new results, quoting previous works by other authors in the proofs. In the introduction, the authors quoted related references.FindingsThe authors get a few theorems, mainly describing some monic polynomial arising as a base polynomial of a square matrix.Originality/valueAs far as the author knows, all the results are new, and the approach is also new.\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ajms-10-2022-0242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-10-2022-0242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的研究作为Hermitian矩阵行列式得到的有限域上的形式,并用这些行列式形式定义和研究有限域上平方矩阵的基多项式。设计/方法论/方法作者对新结果给出了充分的证明,并在证明中引用了其他作者以前的作品。在引言中,作者引用了相关参考文献。发现得到了几个定理,主要描述了一个作为方阵的基多项式而产生的一次多项式。原创性/价值据作者所知,所有的结果都是新的,方法也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinantal polynomials and the base polynomial of a square matrix over a finite field
PurposeThe author studies forms over finite fields obtained as the determinant of Hermitian matrices and use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.Design/methodology/approachThe authors give full proofs for the new results, quoting previous works by other authors in the proofs. In the introduction, the authors quoted related references.FindingsThe authors get a few theorems, mainly describing some monic polynomial arising as a base polynomial of a square matrix.Originality/valueAs far as the author knows, all the results are new, and the approach is also new.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信