利用正交匹配追踪恢复稀疏信号的一个新结果

IF 0.7 Q3 STATISTICS & PROBABILITY
Xueping Chen, Jianzhong Liu, Jiandong Chen
{"title":"利用正交匹配追踪恢复稀疏信号的一个新结果","authors":"Xueping Chen, Jianzhong Liu, Jiandong Chen","doi":"10.1080/24754269.2022.2048445","DOIUrl":null,"url":null,"abstract":"Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties of orthogonal projection matrix, we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals, which improves significantly upon the latest results as we know.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"220 - 226"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new result on recovery sparse signals using orthogonal matching pursuit\",\"authors\":\"Xueping Chen, Jianzhong Liu, Jiandong Chen\",\"doi\":\"10.1080/24754269.2022.2048445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties of orthogonal projection matrix, we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals, which improves significantly upon the latest results as we know.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"220 - 226\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2022.2048445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2048445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

正交匹配追踪(OMP)算法是一种经典的贪婪算法,广泛应用于压缩感知领域。本文利用Wielandt不等式和正交投影矩阵的一些性质,得到了OMP算法精确恢复稀疏信号所需的新的迭代次数,在我们所知的最新结果的基础上有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new result on recovery sparse signals using orthogonal matching pursuit
Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties of orthogonal projection matrix, we obtained a new number of iterations required for the OMP algorithm to perform exact recovery of sparse signals, which improves significantly upon the latest results as we know.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信