非线性分数阶拉普拉斯问题的正解

IF 0.8 4区 数学 Q2 MATHEMATICS
Elliott Hollifield
{"title":"非线性分数阶拉普拉斯问题的正解","authors":"Elliott Hollifield","doi":"10.58997/ejde.sp.02.h1","DOIUrl":null,"url":null,"abstract":"We consider a class of nonlinear fractional Laplacian problems satisfying the homogeneous Dirichlet condition on the exterior of a bounded domain. We prove the existence of a positive weak solution for classes of nonlinearities which are either sublinear or asymptotically linear at infinity. We use the method of sub-and-supersolutions to establish the results. We also provide numerical bifurcation diagrams, corresponding to the theoretical results, using the finite element method in one  dimension.\nSee also https://ejde.math.txstate.edu/special/02/h1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions for nonlinear fractional Laplacian problems\",\"authors\":\"Elliott Hollifield\",\"doi\":\"10.58997/ejde.sp.02.h1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of nonlinear fractional Laplacian problems satisfying the homogeneous Dirichlet condition on the exterior of a bounded domain. We prove the existence of a positive weak solution for classes of nonlinearities which are either sublinear or asymptotically linear at infinity. We use the method of sub-and-supersolutions to establish the results. We also provide numerical bifurcation diagrams, corresponding to the theoretical results, using the finite element method in one  dimension.\\nSee also https://ejde.math.txstate.edu/special/02/h1/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.sp.02.h1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.h1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类非线性分数阶拉普拉斯问题在有界域外满足齐次狄利克雷条件。证明了一类在无穷远处为次线性或渐近线性的非线性问题的正弱解的存在性。我们用分解和超解的方法来建立结果。本文还利用一维有限元方法给出了与理论结果相对应的数值分岔图。参见https://ejde.math.txstate.edu/special/02/h1/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive solutions for nonlinear fractional Laplacian problems
We consider a class of nonlinear fractional Laplacian problems satisfying the homogeneous Dirichlet condition on the exterior of a bounded domain. We prove the existence of a positive weak solution for classes of nonlinearities which are either sublinear or asymptotically linear at infinity. We use the method of sub-and-supersolutions to establish the results. We also provide numerical bifurcation diagrams, corresponding to the theoretical results, using the finite element method in one  dimension. See also https://ejde.math.txstate.edu/special/02/h1/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信