$\mathbb{Z}$和$\mathbb{Z}/n\mathbb{Z}$的球面体积和zeta函数的特殊值

IF 0.5 3区 数学 Q3 MATHEMATICS
A. Karlsson, Massimiliano Pallich
{"title":"$\\mathbb{Z}$和$\\mathbb{Z}/n\\mathbb{Z}$的球面体积和zeta函数的特殊值","authors":"A. Karlsson, Massimiliano Pallich","doi":"10.4064/aa220912-1-3","DOIUrl":null,"url":null,"abstract":"The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volumes of spheres and special values\\nof zeta functions of $\\\\mathbb{Z}$ and $\\\\mathbb{Z}/n\\\\mathbb{Z}$\",\"authors\":\"A. Karlsson, Massimiliano Pallich\",\"doi\":\"10.4064/aa220912-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\\\\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220912-1-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220912-1-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

将单位球在每一维上的体积解释为$\mathbb{Z}$的ζ函数的特殊值的乘积,类似于算术群理论中的Minkowski和Siegel的体积公式。为这个专门用于加泰罗尼亚数字的zeta函数找到了一个乘积公式。此外,还推导了各种其他zeta值的某些封闭形式表达式,特别是导致黎曼zeta函数的欧拉值的另一种观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volumes of spheres and special values of zeta functions of $\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$
The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信