{"title":"$\\mathbb{Z}$和$\\mathbb{Z}/n\\mathbb{Z}$的球面体积和zeta函数的特殊值","authors":"A. Karlsson, Massimiliano Pallich","doi":"10.4064/aa220912-1-3","DOIUrl":null,"url":null,"abstract":"The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volumes of spheres and special values\\nof zeta functions of $\\\\mathbb{Z}$ and $\\\\mathbb{Z}/n\\\\mathbb{Z}$\",\"authors\":\"A. Karlsson, Massimiliano Pallich\",\"doi\":\"10.4064/aa220912-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\\\\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220912-1-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220912-1-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Volumes of spheres and special values
of zeta functions of $\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$
The volume of the unit sphere in every dimension is given a new interpretation as a product of special values of the zeta function of $\mathbb{Z}$, akin to volume formulas of Minkowski and Siegel in the theory of arithmetic groups. A product formula is found for this zeta function that specializes to Catalan numbers. Moreover, certain closed-form expressions for various other zeta values are deduced, in particular leading to an alternative perspective on Euler's values of the Riemann zeta function.