渐近类卡斯纳奇点

IF 1.7 1区 数学 Q1 MATHEMATICS
G. Fournodavlos, J. Luk
{"title":"渐近类卡斯纳奇点","authors":"G. Fournodavlos, J. Luk","doi":"10.1353/ajm.2023.a902957","DOIUrl":null,"url":null,"abstract":"abstract:We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations taking the form $$ {}^{(4)}g = -dt^2 + \\sum_{i,j=1}^3 a_{ij}t^{2 p_{\\max\\{i,j\\}}}\\,{\\rm d} x^i\\,{\\rm d} x^j $$ on $(0,T]_t\\times\\Bbb{T}^3_x$, where $a_{ij}(t,x)$ and $p_i(x)$ are regular functions without symmetry or analyticity assumptions. These metrics are singular and asymptotically Kasner-like as $t\\to 0^+$. These solutions are expected to be highly non-generic, and our construction can be viewed as solving a singular initial value problem with Fuchsian-type analysis where the data are posed on the ``singular hypersurface'' $\\{t=0\\}$. This is the first such result without imposing symmetry or analyticity. To carry out the analysis, we study the problem in a synchronized coordinate system. In particular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on estimating the second fundamental forms of the constant-$t$ hypersurfaces.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Asymptotically Kasner-like singularities\",\"authors\":\"G. Fournodavlos, J. Luk\",\"doi\":\"10.1353/ajm.2023.a902957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations taking the form $$ {}^{(4)}g = -dt^2 + \\\\sum_{i,j=1}^3 a_{ij}t^{2 p_{\\\\max\\\\{i,j\\\\}}}\\\\,{\\\\rm d} x^i\\\\,{\\\\rm d} x^j $$ on $(0,T]_t\\\\times\\\\Bbb{T}^3_x$, where $a_{ij}(t,x)$ and $p_i(x)$ are regular functions without symmetry or analyticity assumptions. These metrics are singular and asymptotically Kasner-like as $t\\\\to 0^+$. These solutions are expected to be highly non-generic, and our construction can be viewed as solving a singular initial value problem with Fuchsian-type analysis where the data are posed on the ``singular hypersurface'' $\\\\{t=0\\\\}$. This is the first such result without imposing symmetry or analyticity. To carry out the analysis, we study the problem in a synchronized coordinate system. In particular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on estimating the second fundamental forms of the constant-$t$ hypersurfaces.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a902957\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a902957","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

文摘:我们证明了形式为$${}^{(4)}g=-dt^2+\sum_{i,j=1}^3a的爱因斯坦真空方程解的存在性、唯一性和正则性_{ij}t^在$(0,T]_T\times\Bbb{T}^3_x$上的{2 p_{\max\{i,j\}}}\,{\rm d}x^i\,}m d}x ^j$$,其中$a_{ij}(T,x)$和$p_i(x)$是没有对称性或分析性假设的正则函数。这些度量是奇异的并且渐近地类似于Kasner的$t\到0^+$。这些解预计是高度非泛型的,我们的构造可以被视为用Fuchsian型分析解决奇异初值问题,其中数据是在“奇异超曲面”$\{t=0\}$上提出的。这是第一个没有强加对称性或分析性的结果。为了进行分析,我们研究了同步坐标系中的问题。特别地,我们引入了一种新的方法来在这样的坐标系中执行(加权)能量估计,该方法基于对常数-$t$超曲面的第二基本形式的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically Kasner-like singularities
abstract:We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations taking the form $$ {}^{(4)}g = -dt^2 + \sum_{i,j=1}^3 a_{ij}t^{2 p_{\max\{i,j\}}}\,{\rm d} x^i\,{\rm d} x^j $$ on $(0,T]_t\times\Bbb{T}^3_x$, where $a_{ij}(t,x)$ and $p_i(x)$ are regular functions without symmetry or analyticity assumptions. These metrics are singular and asymptotically Kasner-like as $t\to 0^+$. These solutions are expected to be highly non-generic, and our construction can be viewed as solving a singular initial value problem with Fuchsian-type analysis where the data are posed on the ``singular hypersurface'' $\{t=0\}$. This is the first such result without imposing symmetry or analyticity. To carry out the analysis, we study the problem in a synchronized coordinate system. In particular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on estimating the second fundamental forms of the constant-$t$ hypersurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信