EGMM视频监控用于监控城市交通场景

IF 0.8 Q4 ROBOTICS
A. Reyana, S. Kautish, A. S. Vibith, S. Goyal
{"title":"EGMM视频监控用于监控城市交通场景","authors":"A. Reyana, S. Kautish, A. S. Vibith, S. Goyal","doi":"10.1108/ijius-07-2021-0061","DOIUrl":null,"url":null,"abstract":"PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGMM video surveillance for monitoring urban traffic scenario\",\"authors\":\"A. Reyana, S. Kautish, A. S. Vibith, S. Goyal\",\"doi\":\"10.1108/ijius-07-2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-07-2021-0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-07-2021-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

目的在交通监控系统中,通过在交通场景中安装静态摄像机来监控搅拌车辆的检测。背景减法是一种常用的方法,将前景中的尖锐物体从背景中分离出来。该方法采用高斯混合模型,可以毫不费力地通过缓慢移动或暂时停止的车辆污染。本文提出了增强高斯混合模型来克服所解决的问题,有效地检测复杂交通场景中的车辆。该模型通过使用真实道路旅行视频进行的实验进行了评估。结果表明,该模型与现有的高斯混合模型(GMM)模型相比,精度达到0.9759,并且避免了对缓慢移动或瞬间停车车辆的污染。独创性/价值提出的方法有效地对交通车辆进行组合、跟踪和分类,解决了车辆缓慢移动或瞬间停车造成的污染问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EGMM video surveillance for monitoring urban traffic scenario
PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信