大任务提前到来:从关键队列到随机图

Q1 Mathematics
G. Bet, R. van der Hofstad, J. V. van Leeuwaarden
{"title":"大任务提前到来:从关键队列到随机图","authors":"G. Bet, R. van der Hofstad, J. V. van Leeuwaarden","doi":"10.1287/stsy.2019.0057","DOIUrl":null,"url":null,"abstract":"We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0057","citationCount":"6","resultStr":"{\"title\":\"Big Jobs Arrive Early: From Critical Queues to Random Graphs\",\"authors\":\"G. Bet, R. van der Hofstad, J. V. van Leeuwaarden\",\"doi\":\"10.1287/stsy.2019.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/stsy.2019.0057\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2019.0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

我们考虑一个只有有限的n个客户池才能到达的队列,有时取决于他们的服务需求。具有随机服务需求S的客户在指数分布时间后到达队列,其中一些客户的平均S-α[公式:见正文];因此,更大的服务需求促使客户更早地加入。这个有限池队列在两个先前研究的情况之间插值:α=0给出了所谓的[公式:见正文]队列,α=1与非齐次随机图的探索过程密切相关。我们考虑池大小n增长到无穷大的渐近状态,并建立了缩放队列长度过程收敛于具有负二次漂移的扩散过程。我们利用这一渐进结果来表征创造长期活动所需的领先优势。我们还描述了队列的第一个繁忙时段如何产生临界连接的随机林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big Jobs Arrive Early: From Critical Queues to Random Graphs
We consider a queue to which only a finite pool of n customers can arrive, at times depending on their service requirement. A customer with stochastic service requirement S arrives to the queue after an exponentially distributed time with mean S-αfor some [Formula: see text]; therefore, larger service requirements trigger customers to join earlier. This finite-pool queue interpolates between two previously studied cases: α = 0 gives the so-called [Formula: see text] queue and α = 1 is closely related to the exploration process for inhomogeneous random graphs. We consider the asymptotic regime in which the pool size n grows to infinity and establish that the scaled queue-length process converges to a diffusion process with a negative quadratic drift. We leverage this asymptotic result to characterize the head start that is needed to create a long period of activity. We also describe how this first busy period of the queue gives rise to a critically connected random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信