关于聚类的混合模型选择

J. Ngatchou-Wandji, J. Bulla, E. Lorraine
{"title":"关于聚类的混合模型选择","authors":"J. Ngatchou-Wandji, J. Bulla, E. Lorraine","doi":"10.6339/JDS.2013.11(1).1135","DOIUrl":null,"url":null,"abstract":"2 Universit e de Caen Abstract: Two methods for clustering data and choosing a mixture model are proposed. First, we derive a new classication algorithm based on the classication likelihood. Then, the likelihood conditional on these clusters is written as the product of likelihoods of each cluster, and AIC- respectively BIC-type approximations are applied. The resulting criteria turn out to be the sum of the AIC or BIC relative to each cluster plus an entropy term. The performance of our methods is evaluated by Monte-Carlo methods and on a real data set, showing in particular that the iterative estimation algorithm converges quickly in general, and thus the computational load is rather low.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Choosing a Mixture Model for Clustering\",\"authors\":\"J. Ngatchou-Wandji, J. Bulla, E. Lorraine\",\"doi\":\"10.6339/JDS.2013.11(1).1135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2 Universit e de Caen Abstract: Two methods for clustering data and choosing a mixture model are proposed. First, we derive a new classication algorithm based on the classication likelihood. Then, the likelihood conditional on these clusters is written as the product of likelihoods of each cluster, and AIC- respectively BIC-type approximations are applied. The resulting criteria turn out to be the sum of the AIC or BIC relative to each cluster plus an entropy term. The performance of our methods is evaluated by Monte-Carlo methods and on a real data set, showing in particular that the iterative estimation algorithm converges quickly in general, and thus the computational load is rather low.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/JDS.2013.11(1).1135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(1).1135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要提出了两种数据聚类和混合模型选择的方法。首先,提出了一种新的基于分类似然的分类算法。然后,将这些聚类的似然条件写成每个聚类的似然积,并分别应用AIC- bic型近似。最终的标准是相对于每个簇的AIC或BIC加上熵项的总和。通过蒙特卡罗方法和实际数据集对方法的性能进行了评估,结果表明,迭代估计算法一般收敛速度快,计算量较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Choosing a Mixture Model for Clustering
2 Universit e de Caen Abstract: Two methods for clustering data and choosing a mixture model are proposed. First, we derive a new classication algorithm based on the classication likelihood. Then, the likelihood conditional on these clusters is written as the product of likelihoods of each cluster, and AIC- respectively BIC-type approximations are applied. The resulting criteria turn out to be the sum of the AIC or BIC relative to each cluster plus an entropy term. The performance of our methods is evaluated by Monte-Carlo methods and on a real data set, showing in particular that the iterative estimation algorithm converges quickly in general, and thus the computational load is rather low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信