球磨加热法制备Mn–Zn颗粒的合成、结构、高温行为及磁性能

Q2 Physics and Astronomy
M. Mirbagheri , O. Mirzaee , M. Tajally , H. Shokrollahi
{"title":"球磨加热法制备Mn–Zn颗粒的合成、结构、高温行为及磁性能","authors":"M. Mirbagheri ,&nbsp;O. Mirzaee ,&nbsp;M. Tajally ,&nbsp;H. Shokrollahi","doi":"10.1016/j.physo.2023.100139","DOIUrl":null,"url":null,"abstract":"<div><p>This paper has focused upon the synthesis, structure, hyperthermia and magnetic properties of the Mn–Zn particles prepared by a new combined ball milling and heating process. Normally, it is required that the partial pressure in the final sintering be controlled by the Mn–Zn ferrite preparation, yet in the current method the ferrite has been obtained with a nearly high purity. The nanocrystalline Mn<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.25, 0.5 and 0.75) powders were characterized using the X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Raman spectrometer (RS), Fourier-transform infrared spectrometer (FTIR), vibrating sample magnetometer (VSM) and specific absorption rate (SAR). The FTIR and Raman data confirmed the result of the XRD data and the presence of spinel structure. The zinc content affected the band lengths, cation distributions and particle sizes. The structural results revealed that as the Zn concentration increases, the particle size decreases and the other cations tend to go to the octahedral sites. The results demonstrated that the highest level of SAR corresponds to the efficient and non-toxic Mn<sub>0.75</sub>Zn<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> due to the suitable particle size and noticeable saturation magnetization.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"14 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis, structure, hyperthermia behavior and magnetic properties of Mn–Zn particles prepared by a new method of ball-milling and heating\",\"authors\":\"M. Mirbagheri ,&nbsp;O. Mirzaee ,&nbsp;M. Tajally ,&nbsp;H. Shokrollahi\",\"doi\":\"10.1016/j.physo.2023.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper has focused upon the synthesis, structure, hyperthermia and magnetic properties of the Mn–Zn particles prepared by a new combined ball milling and heating process. Normally, it is required that the partial pressure in the final sintering be controlled by the Mn–Zn ferrite preparation, yet in the current method the ferrite has been obtained with a nearly high purity. The nanocrystalline Mn<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.25, 0.5 and 0.75) powders were characterized using the X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Raman spectrometer (RS), Fourier-transform infrared spectrometer (FTIR), vibrating sample magnetometer (VSM) and specific absorption rate (SAR). The FTIR and Raman data confirmed the result of the XRD data and the presence of spinel structure. The zinc content affected the band lengths, cation distributions and particle sizes. The structural results revealed that as the Zn concentration increases, the particle size decreases and the other cations tend to go to the octahedral sites. The results demonstrated that the highest level of SAR corresponds to the efficient and non-toxic Mn<sub>0.75</sub>Zn<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> due to the suitable particle size and noticeable saturation magnetization.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"14 \",\"pages\":\"Article 100139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

摘要

本文主要研究了采用球磨-加热复合法制备的Mn-Zn颗粒的合成、结构、热疗和磁性能。通常情况下,最终烧结时的分压需要通过制备Mn-Zn铁氧体来控制,但在目前的方法中,获得的铁氧体纯度几乎很高。采用x射线衍射仪(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、拉曼光谱仪(RS)、傅里叶变换红外光谱仪(FTIR)、振动样品磁强计(VSM)和比吸收率(SAR)对纳米晶Mn1-xZnxFe2O4 (x = 0.25、0.5和0.75)粉末进行了表征。FTIR和Raman数据证实了XRD数据的结果,证实了尖晶石结构的存在。锌含量对条带长度、阳离子分布和颗粒大小有影响。结构结果表明,随着Zn浓度的增加,颗粒尺寸减小,其他阳离子倾向于向八面体位置移动。结果表明,由于粒径适宜,饱和磁化强度明显,所以SAR值最高的是高效无毒的Mn0.75Zn0.25Fe2O4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, structure, hyperthermia behavior and magnetic properties of Mn–Zn particles prepared by a new method of ball-milling and heating

This paper has focused upon the synthesis, structure, hyperthermia and magnetic properties of the Mn–Zn particles prepared by a new combined ball milling and heating process. Normally, it is required that the partial pressure in the final sintering be controlled by the Mn–Zn ferrite preparation, yet in the current method the ferrite has been obtained with a nearly high purity. The nanocrystalline Mn1-xZnxFe2O4 (x = 0.25, 0.5 and 0.75) powders were characterized using the X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Raman spectrometer (RS), Fourier-transform infrared spectrometer (FTIR), vibrating sample magnetometer (VSM) and specific absorption rate (SAR). The FTIR and Raman data confirmed the result of the XRD data and the presence of spinel structure. The zinc content affected the band lengths, cation distributions and particle sizes. The structural results revealed that as the Zn concentration increases, the particle size decreases and the other cations tend to go to the octahedral sites. The results demonstrated that the highest level of SAR corresponds to the efficient and non-toxic Mn0.75Zn0.25Fe2O4 due to the suitable particle size and noticeable saturation magnetization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信