通过原位/操作透射电子显微镜表征电池材料和电极

IF 6.1 Q2 CHEMISTRY, PHYSICAL
S. Basak, K. Dzieciol, Y. E. Durmus, H. Tempel, H. Kungl, Chandramohan George, J. Mayer, Rüdiger-Albrecht Eichel
{"title":"通过原位/操作透射电子显微镜表征电池材料和电极","authors":"S. Basak, K. Dzieciol, Y. E. Durmus, H. Tempel, H. Kungl, Chandramohan George, J. Mayer, Rüdiger-Albrecht Eichel","doi":"10.1063/5.0075430","DOIUrl":null,"url":null,"abstract":"In situ transmission electron microscopy (TEM) research has enabled better understanding of various battery chemistries (Li-ion, Li–S, metal–O2, Li, and Na metal based, etc.), which fueled substantial developments in battery technologies. In this review, we highlight some of the recent developments shedding new light on battery materials and electrochemistry via TEM. Studying battery electrode processes depending on the type of electrolytes used and the nature of electrode–electrolyte interfaces established upon battery cycling conditions is key to further adoption of battery technologies. To this end, in situ/ operando TEM methodologies would require accommodating alongside correlation microscopy tools to predict battery interface evolution, reactivity, and stability, for which the use of x-ray computed tomography and image process via machine learning providing complementary information is highlighted. Such combined approaches have potential to translate TEM-based battery results into more direct macroscopic relevance for the optimization of real-world batteries.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterizing battery materials and electrodes via in situ/operando transmission electron microscopy\",\"authors\":\"S. Basak, K. Dzieciol, Y. E. Durmus, H. Tempel, H. Kungl, Chandramohan George, J. Mayer, Rüdiger-Albrecht Eichel\",\"doi\":\"10.1063/5.0075430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ transmission electron microscopy (TEM) research has enabled better understanding of various battery chemistries (Li-ion, Li–S, metal–O2, Li, and Na metal based, etc.), which fueled substantial developments in battery technologies. In this review, we highlight some of the recent developments shedding new light on battery materials and electrochemistry via TEM. Studying battery electrode processes depending on the type of electrolytes used and the nature of electrode–electrolyte interfaces established upon battery cycling conditions is key to further adoption of battery technologies. To this end, in situ/ operando TEM methodologies would require accommodating alongside correlation microscopy tools to predict battery interface evolution, reactivity, and stability, for which the use of x-ray computed tomography and image process via machine learning providing complementary information is highlighted. Such combined approaches have potential to translate TEM-based battery results into more direct macroscopic relevance for the optimization of real-world batteries.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0075430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0075430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

摘要

原位透射电子显微镜(TEM)研究使人们能够更好地理解各种电池化学成分(锂离子、锂- s、金属- o2、锂和金属钠等),从而推动了电池技术的实质性发展。在这篇综述中,我们重点介绍了最近的一些进展,通过透射电镜对电池材料和电化学有了新的认识。根据所使用的电解质类型和电池循环条件下建立的电极-电解质界面的性质来研究电池电极过程是进一步采用电池技术的关键。为此,原位/操作TEM方法需要与相关显微镜工具一起适应,以预测电池界面的演变、反应性和稳定性,为此,使用x射线计算机断层扫描和通过机器学习提供补充信息的图像处理是重点。这种组合方法有可能将基于tem的电池结果转化为更直接的宏观相关性,以优化现实世界的电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing battery materials and electrodes via in situ/operando transmission electron microscopy
In situ transmission electron microscopy (TEM) research has enabled better understanding of various battery chemistries (Li-ion, Li–S, metal–O2, Li, and Na metal based, etc.), which fueled substantial developments in battery technologies. In this review, we highlight some of the recent developments shedding new light on battery materials and electrochemistry via TEM. Studying battery electrode processes depending on the type of electrolytes used and the nature of electrode–electrolyte interfaces established upon battery cycling conditions is key to further adoption of battery technologies. To this end, in situ/ operando TEM methodologies would require accommodating alongside correlation microscopy tools to predict battery interface evolution, reactivity, and stability, for which the use of x-ray computed tomography and image process via machine learning providing complementary information is highlighted. Such combined approaches have potential to translate TEM-based battery results into more direct macroscopic relevance for the optimization of real-world batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信