粘性导热流体研究中出现的拟线性椭圆系统爆破径向解的渐近行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Bachir, J. Giacomoni, G. Warnault
{"title":"粘性导热流体研究中出现的拟线性椭圆系统爆破径向解的渐近行为","authors":"A. Bachir, J. Giacomoni, G. Warnault","doi":"10.57262/die035-0910-511","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following quasilinear elliptic system involving gradient terms in the form: { ∆pu = v |∇u| in Ω ∆pv = v β |∇u| in Ω, where Ω ⊂ R (N ≥ 2) is either equal to R or equal to a ball BR centered at the origin and having radius R > 0, 1 < p < ∞, m, q > 0, α ≥ 0, 0 ≤ β ≤ m and δ := (p− 1− α)(p− 1− β)− qm 6= 0. Our aim is to establish the asymptotics of the blowing-up radial solutions to the above system. Precisely, we provide the accurate asymptotic behavior at the boundary for such blowing-up radial solutions. For that,we prove a strong maximal principle for the problem of independent interest and study an auxiliary asymptotically autonomous system in R.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic behavior of blowing-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting fluids\",\"authors\":\"A. Bachir, J. Giacomoni, G. Warnault\",\"doi\":\"10.57262/die035-0910-511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the following quasilinear elliptic system involving gradient terms in the form: { ∆pu = v |∇u| in Ω ∆pv = v β |∇u| in Ω, where Ω ⊂ R (N ≥ 2) is either equal to R or equal to a ball BR centered at the origin and having radius R > 0, 1 < p < ∞, m, q > 0, α ≥ 0, 0 ≤ β ≤ m and δ := (p− 1− α)(p− 1− β)− qm 6= 0. Our aim is to establish the asymptotics of the blowing-up radial solutions to the above system. Precisely, we provide the accurate asymptotic behavior at the boundary for such blowing-up radial solutions. For that,we prove a strong maximal principle for the problem of independent interest and study an auxiliary asymptotically autonomous system in R.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-0910-511\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0910-511","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们处理以下拟线性椭圆系统涉及梯度项的形式:{∆pu v = | |∇u在Ω∆p - v = vβ|∇u |Ω,哪里Ω⊂R (N≥2)等于R或等于一个球BR为中心在原点,半径R > 0, 1 < p <∞,m q > 0,α≥0,0≤β≤m和δ:= (p−−1α)(p−−1)β−qm 6 = 0。我们的目的是建立上述系统的爆破径向解的渐近性。准确地说,我们给出了这类爆破径向解在边界处的精确渐近性质。为此,我们证明了独立兴趣问题的一个强极大原理,并研究了R中的一个辅助渐近自治系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of blowing-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting fluids
In this paper, we deal with the following quasilinear elliptic system involving gradient terms in the form: { ∆pu = v |∇u| in Ω ∆pv = v β |∇u| in Ω, where Ω ⊂ R (N ≥ 2) is either equal to R or equal to a ball BR centered at the origin and having radius R > 0, 1 < p < ∞, m, q > 0, α ≥ 0, 0 ≤ β ≤ m and δ := (p− 1− α)(p− 1− β)− qm 6= 0. Our aim is to establish the asymptotics of the blowing-up radial solutions to the above system. Precisely, we provide the accurate asymptotic behavior at the boundary for such blowing-up radial solutions. For that,we prove a strong maximal principle for the problem of independent interest and study an auxiliary asymptotically autonomous system in R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信