{"title":"考虑滑移条件的纳米流体在垂直板上流动的水热分析","authors":"M.R. Zangooee , Kh. Hosseinzadeh , D.D. Ganji","doi":"10.1016/j.taml.2022.100357","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls' (NPs') volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation's controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the <em>x</em>-direction skin friction coefficient 95%.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":"12 5","pages":"Article 100357"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209503492200037X/pdfft?md5=426bae1ec7fc0b6b1e19662bc5799217&pid=1-s2.0-S209503492200037X-main.pdf","citationCount":"26","resultStr":"{\"title\":\"Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition\",\"authors\":\"M.R. Zangooee , Kh. Hosseinzadeh , D.D. Ganji\",\"doi\":\"10.1016/j.taml.2022.100357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls' (NPs') volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation's controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the <em>x</em>-direction skin friction coefficient 95%.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":\"12 5\",\"pages\":\"Article 100357\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209503492200037X/pdfft?md5=426bae1ec7fc0b6b1e19662bc5799217&pid=1-s2.0-S209503492200037X-main.pdf\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209503492200037X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209503492200037X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition
Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls' (NPs') volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation's controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the x-direction skin friction coefficient 95%.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).