Yuri Álvarez López, M. García-Fernández, G. Álvarez-Narciandi, F. Las-Heras Andrés
{"title":"基于无人机的探地雷达系统:综述","authors":"Yuri Álvarez López, M. García-Fernández, G. Álvarez-Narciandi, F. Las-Heras Andrés","doi":"10.1109/mgrs.2022.3160664","DOIUrl":null,"url":null,"abstract":"Advances in unmanned aerial vehicle (UAV) technology have fostered its use in a wide range of areas, such as agriculture and forestry, surveillance and security, and infrastructure inspection. One of the advantages of UAVs is their ability to conduct remote inspection and sensing by placing different kinds of sensors on board them. In this sense, UAV-based ground-penetrating radar (GPR) systems are of particular interest as they bring together the advantages of UAVs and GPR, resulting in contactless subsurface sensing and imaging systems capable of performing a fast scanning of difficult-to-access scenarios. This contribution reviews the advances on UAV-based GPR systems, describing their architecture and subsystems. In particular, an analysis of different UAV-based GPR systems is presented, focusing on the technical solutions adopted in each case and the detection capabilities that have been achieved. Attention will be also given to the methodologies implemented to obtain 3D high-resolution images of the underground. Finally, the main challenges faced by these systems concerning further improvements of the scanning throughput and the detection accuracy will be discussed.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"66-86"},"PeriodicalIF":16.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Unmanned Aerial Vehicle-Based Ground-Penetrating Radar Systems: A review\",\"authors\":\"Yuri Álvarez López, M. García-Fernández, G. Álvarez-Narciandi, F. Las-Heras Andrés\",\"doi\":\"10.1109/mgrs.2022.3160664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in unmanned aerial vehicle (UAV) technology have fostered its use in a wide range of areas, such as agriculture and forestry, surveillance and security, and infrastructure inspection. One of the advantages of UAVs is their ability to conduct remote inspection and sensing by placing different kinds of sensors on board them. In this sense, UAV-based ground-penetrating radar (GPR) systems are of particular interest as they bring together the advantages of UAVs and GPR, resulting in contactless subsurface sensing and imaging systems capable of performing a fast scanning of difficult-to-access scenarios. This contribution reviews the advances on UAV-based GPR systems, describing their architecture and subsystems. In particular, an analysis of different UAV-based GPR systems is presented, focusing on the technical solutions adopted in each case and the detection capabilities that have been achieved. Attention will be also given to the methodologies implemented to obtain 3D high-resolution images of the underground. Finally, the main challenges faced by these systems concerning further improvements of the scanning throughput and the detection accuracy will be discussed.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"10 1\",\"pages\":\"66-86\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/mgrs.2022.3160664\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/mgrs.2022.3160664","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Unmanned Aerial Vehicle-Based Ground-Penetrating Radar Systems: A review
Advances in unmanned aerial vehicle (UAV) technology have fostered its use in a wide range of areas, such as agriculture and forestry, surveillance and security, and infrastructure inspection. One of the advantages of UAVs is their ability to conduct remote inspection and sensing by placing different kinds of sensors on board them. In this sense, UAV-based ground-penetrating radar (GPR) systems are of particular interest as they bring together the advantages of UAVs and GPR, resulting in contactless subsurface sensing and imaging systems capable of performing a fast scanning of difficult-to-access scenarios. This contribution reviews the advances on UAV-based GPR systems, describing their architecture and subsystems. In particular, an analysis of different UAV-based GPR systems is presented, focusing on the technical solutions adopted in each case and the detection capabilities that have been achieved. Attention will be also given to the methodologies implemented to obtain 3D high-resolution images of the underground. Finally, the main challenges faced by these systems concerning further improvements of the scanning throughput and the detection accuracy will be discussed.
期刊介绍:
The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.