训练密集通道寻回犬所需的全部问题

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Devendra Singh Sachan, M. Lewis, Dani Yogatama, Luke Zettlemoyer, J. Pineau, M. Zaheer
{"title":"训练密集通道寻回犬所需的全部问题","authors":"Devendra Singh Sachan, M. Lewis, Dani Yogatama, Luke Zettlemoyer, J. Pineau, M. Zaheer","doi":"10.1162/tacl_a_00564","DOIUrl":null,"url":null,"abstract":"We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages). It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence passages, and (2) the passages are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both passage and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.1 Our code and model checkpoints are available at: https://github.com/DevSinghSachan/art.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"600-616"},"PeriodicalIF":4.2000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Questions Are All You Need to Train a Dense Passage Retriever\",\"authors\":\"Devendra Singh Sachan, M. Lewis, Dani Yogatama, Luke Zettlemoyer, J. Pineau, M. Zaheer\",\"doi\":\"10.1162/tacl_a_00564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages). It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence passages, and (2) the passages are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both passage and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.1 Our code and model checkpoints are available at: https://github.com/DevSinghSachan/art.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"11 1\",\"pages\":\"600-616\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00564\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00564","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 22

摘要

我们介绍了ART,一种新的语料库级自动编码方法,用于训练不需要任何标记训练数据的密集检索模型。密集检索是开放域任务的核心挑战,例如开放QA,其中最先进的方法通常需要大型监督数据集,并具有自定义硬负挖掘和正例去噪。相比之下,ART只需要访问未配对的输入和输出(例如,问题和潜在的答案段落)。它使用了一种新的段落检索自动编码方案,其中(1)使用输入的问题来检索一组证据段落,(2)然后使用这些段落来计算重构原始问题的概率。基于问题重构的检索训练可以有效地对段落和问题编码器进行无监督学习,这可以在以后整合到完整的Open QA系统中,而无需进一步的微调。大量的实验表明,ART在多个QA检索基准上获得了最先进的结果,只需要从预训练的语言模型中进行通用初始化,从而消除了对标记数据和特定任务损失的需求我们的代码和模型检查点可以在:https://github.com/DevSinghSachan/art上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Questions Are All You Need to Train a Dense Passage Retriever
We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages). It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence passages, and (2) the passages are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both passage and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.1 Our code and model checkpoints are available at: https://github.com/DevSinghSachan/art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信