{"title":"论形式化逻辑模态","authors":"L. Pavone","doi":"10.52685/cjp.21.63.4","DOIUrl":null,"url":null,"abstract":"This paper is in the scope of the philosophy of modal logic; more precisely, it concerns the semantics of modal logic, when the modal elements are interpreted as logical modalities. Most authors have thought that the logic for logical modality—that is, the one to be used to formalize the notion of logical truth (and other related notions)—is to be found among logical systems in which modalities are allowed to be iterated. This has raised the problem of the adequacy, to that formalization purpose, of some modal schemes, such as S4 and S5 . It has been argued that the acceptance of S5 leads to non-normal modal systems, in which the uniform substitution rule fails. The thesis supported in this paper is that such a failure is rather to be attributed to what will be called “Condition of internalization.” If this is correct, there seems to be no normal modal logic system capable of formalizing logical modality, even when S5 is rejected in favor of a weaker system such as S4, as recently proposed by McKeon.","PeriodicalId":43218,"journal":{"name":"Croatian Journal of Philosophy","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Formalizing Logical Modalities\",\"authors\":\"L. Pavone\",\"doi\":\"10.52685/cjp.21.63.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is in the scope of the philosophy of modal logic; more precisely, it concerns the semantics of modal logic, when the modal elements are interpreted as logical modalities. Most authors have thought that the logic for logical modality—that is, the one to be used to formalize the notion of logical truth (and other related notions)—is to be found among logical systems in which modalities are allowed to be iterated. This has raised the problem of the adequacy, to that formalization purpose, of some modal schemes, such as S4 and S5 . It has been argued that the acceptance of S5 leads to non-normal modal systems, in which the uniform substitution rule fails. The thesis supported in this paper is that such a failure is rather to be attributed to what will be called “Condition of internalization.” If this is correct, there seems to be no normal modal logic system capable of formalizing logical modality, even when S5 is rejected in favor of a weaker system such as S4, as recently proposed by McKeon.\",\"PeriodicalId\":43218,\"journal\":{\"name\":\"Croatian Journal of Philosophy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Journal of Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52685/cjp.21.63.4\",\"RegionNum\":4,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52685/cjp.21.63.4","RegionNum":4,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
This paper is in the scope of the philosophy of modal logic; more precisely, it concerns the semantics of modal logic, when the modal elements are interpreted as logical modalities. Most authors have thought that the logic for logical modality—that is, the one to be used to formalize the notion of logical truth (and other related notions)—is to be found among logical systems in which modalities are allowed to be iterated. This has raised the problem of the adequacy, to that formalization purpose, of some modal schemes, such as S4 and S5 . It has been argued that the acceptance of S5 leads to non-normal modal systems, in which the uniform substitution rule fails. The thesis supported in this paper is that such a failure is rather to be attributed to what will be called “Condition of internalization.” If this is correct, there seems to be no normal modal logic system capable of formalizing logical modality, even when S5 is rejected in favor of a weaker system such as S4, as recently proposed by McKeon.