Okorusu尾矿——第一部分:浅表尾矿的一般特征

IF 1.2 4区 地球科学 Q2 GEOLOGY
S. Lohmeier, R. Ellmies, T. Adolffs, S. Sindern
{"title":"Okorusu尾矿——第一部分:浅表尾矿的一般特征","authors":"S. Lohmeier, R. Ellmies, T. Adolffs, S. Sindern","doi":"10.25131/sajg.126.0014","DOIUrl":null,"url":null,"abstract":"\n Former open-pit fluorite mining and processing at the Okorusu carbonatite deposit, Namibia, resulted in a large tailings dump comprising an old (~553 kt) and a new tailings part (~3.8 Mt). We characterise dump tailings mineralogically and geochemically in order to evaluate the potential for processing of relict fluorite and recovery of other commodities of interest. The tailings comprise largely quartz, K-feldspar, different carbonates (ankerite, calcite, dolomite, siderite and manganese carbonates), fluorite, apatite, pyroxenes, hornblende and Fe (hydro)oxides, whereas all other mineral phases such as baryte, pyrite, pyrochlore and REE fluorcarbonates occur in traces. The largest proportional difference between samples from the surface of the new and old tailings pertains to fluorite (average old dump: ~12 vol.%; average new dump: ~5 vol.%) and apatite proportions (average old dump: ~8 vol.%; average new dump: ~5 vol.%). Mineralogical contrasts between both tailings parts result largely from fluorite, apatite, quartz and Fe (hydro)oxides being more abundant in old tailings and carbonates being more abundant in new tailings. Geochemically, these contrasts are reflected in the major element composition, while variances in trace element compositions are mostly small. The mineral proportions clearly point out considerable fluorite (≥804 kt) and apatite (≥742 kt) resources, with potential by-products of Nb and REE based on drilling data. The readily available material in combination with a high proportion (about 80%) of liberated fluorite are favourable for re-processing by locally available flotation technology. Therefore, the tailings dump can be considered a valuable resource for the critical raw material fluorite and the fertiliser raw material apatite, which are wanted materials on international and national markets.","PeriodicalId":49494,"journal":{"name":"South African Journal of Geology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Okorusu tailings – Part I: General characterisation of superficial tailings\",\"authors\":\"S. Lohmeier, R. Ellmies, T. Adolffs, S. Sindern\",\"doi\":\"10.25131/sajg.126.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Former open-pit fluorite mining and processing at the Okorusu carbonatite deposit, Namibia, resulted in a large tailings dump comprising an old (~553 kt) and a new tailings part (~3.8 Mt). We characterise dump tailings mineralogically and geochemically in order to evaluate the potential for processing of relict fluorite and recovery of other commodities of interest. The tailings comprise largely quartz, K-feldspar, different carbonates (ankerite, calcite, dolomite, siderite and manganese carbonates), fluorite, apatite, pyroxenes, hornblende and Fe (hydro)oxides, whereas all other mineral phases such as baryte, pyrite, pyrochlore and REE fluorcarbonates occur in traces. The largest proportional difference between samples from the surface of the new and old tailings pertains to fluorite (average old dump: ~12 vol.%; average new dump: ~5 vol.%) and apatite proportions (average old dump: ~8 vol.%; average new dump: ~5 vol.%). Mineralogical contrasts between both tailings parts result largely from fluorite, apatite, quartz and Fe (hydro)oxides being more abundant in old tailings and carbonates being more abundant in new tailings. Geochemically, these contrasts are reflected in the major element composition, while variances in trace element compositions are mostly small. The mineral proportions clearly point out considerable fluorite (≥804 kt) and apatite (≥742 kt) resources, with potential by-products of Nb and REE based on drilling data. The readily available material in combination with a high proportion (about 80%) of liberated fluorite are favourable for re-processing by locally available flotation technology. Therefore, the tailings dump can be considered a valuable resource for the critical raw material fluorite and the fertiliser raw material apatite, which are wanted materials on international and national markets.\",\"PeriodicalId\":49494,\"journal\":{\"name\":\"South African Journal of Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.25131/sajg.126.0014\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.25131/sajg.126.0014","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米比亚Okorusu碳酸岩矿床以前的露天萤石开采和加工形成了一个大型尾矿库,包括一个旧尾矿库(~553kt)和一个新尾矿库(~3.8Mt)。我们对尾矿库的矿物和地球化学特征进行了表征,以评估残余萤石加工和其他感兴趣商品回收的潜力。尾矿主要包括石英、钾长石、不同的碳酸盐(铁白云石、方解石、白云石、菱铁矿和碳酸锰)、萤石、磷灰石、辉石、角闪石和铁(水)氧化物,而所有其他矿物相,如重晶石、黄铁矿、烧绿石和REE氟碳酸盐,都存在微量。新尾矿和旧尾矿表面样品之间的最大比例差异属于萤石(平均旧尾矿堆:~12 vol.%;平均新尾矿堆:~5 vol.%)和磷灰石比例(平均旧渣堆:~8 vol.%,石英和铁(水)氧化物在旧尾矿中更为丰富,碳酸盐在新尾矿中更丰富。在地球化学上,这些对比反映在主元素组成中,而微量元素组成的差异大多很小。根据钻探数据,矿物比例清楚地表明了大量的萤石(≥804 kt)和磷灰石(≥742 kt)资源,以及Nb和REE的潜在副产品。容易获得的材料与高比例(约80%)的游离萤石相结合,有利于通过当地可用的浮选技术进行再加工。因此,尾矿堆可以被视为关键原料萤石和化肥原料磷灰石的宝贵资源,这是国际和国内市场上需要的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Okorusu tailings – Part I: General characterisation of superficial tailings
Former open-pit fluorite mining and processing at the Okorusu carbonatite deposit, Namibia, resulted in a large tailings dump comprising an old (~553 kt) and a new tailings part (~3.8 Mt). We characterise dump tailings mineralogically and geochemically in order to evaluate the potential for processing of relict fluorite and recovery of other commodities of interest. The tailings comprise largely quartz, K-feldspar, different carbonates (ankerite, calcite, dolomite, siderite and manganese carbonates), fluorite, apatite, pyroxenes, hornblende and Fe (hydro)oxides, whereas all other mineral phases such as baryte, pyrite, pyrochlore and REE fluorcarbonates occur in traces. The largest proportional difference between samples from the surface of the new and old tailings pertains to fluorite (average old dump: ~12 vol.%; average new dump: ~5 vol.%) and apatite proportions (average old dump: ~8 vol.%; average new dump: ~5 vol.%). Mineralogical contrasts between both tailings parts result largely from fluorite, apatite, quartz and Fe (hydro)oxides being more abundant in old tailings and carbonates being more abundant in new tailings. Geochemically, these contrasts are reflected in the major element composition, while variances in trace element compositions are mostly small. The mineral proportions clearly point out considerable fluorite (≥804 kt) and apatite (≥742 kt) resources, with potential by-products of Nb and REE based on drilling data. The readily available material in combination with a high proportion (about 80%) of liberated fluorite are favourable for re-processing by locally available flotation technology. Therefore, the tailings dump can be considered a valuable resource for the critical raw material fluorite and the fertiliser raw material apatite, which are wanted materials on international and national markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
18
审稿时长
>12 weeks
期刊介绍: The South African Journal of Geology publishes scientific papers, notes, stratigraphic descriptions and discussions in the broadly defined fields of geoscience that are related directly or indirectly to the geology of Africa. Contributions relevant to former supercontinental entities such as Gondwana and Rodinia are also welcome as are topical studies on any geoscience-related discipline. Review papers are welcome as long as they represent original, new syntheses. Special issues are also encouraged but terms for these must be negotiated with the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信