用全等四边形对球体进行平铺ii:有有理角的边组合

IF 0.8 2区 数学 Q2 MATHEMATICS
Yixi Liao, Erxiao Wang
{"title":"用全等四边形对球体进行平铺ii:有有理角的边组合","authors":"Yixi Liao, Erxiao Wang","doi":"10.1017/nmj.2023.20","DOIUrl":null,"url":null,"abstract":"\n Edge-to-edge tilings of the sphere by congruent quadrilaterals are completely classified in a series of three papers. This second one applies the powerful tool of trigonometric Diophantine equations to classify the case of \n \n \n \n$a^3b$\n\n \n -quadrilaterals with all angles being rational degrees. There are \n \n \n \n$12$\n\n \n sporadic and \n \n \n \n$3$\n\n \n infinite sequences of quadrilaterals admitting the two-layer earth map tilings together with their modifications, and \n \n \n \n$3$\n\n \n sporadic quadrilaterals admitting \n \n \n \n$4$\n\n \n exceptional tilings. Among them only three quadrilaterals are convex. New interesting non-edge-to-edge triangular tilings are obtained as a byproduct.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TILINGS OF THE SPHERE BY CONGRUENT QUADRILATERALS II: EDGE COMBINATION WITH RATIONAL ANGLES\",\"authors\":\"Yixi Liao, Erxiao Wang\",\"doi\":\"10.1017/nmj.2023.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Edge-to-edge tilings of the sphere by congruent quadrilaterals are completely classified in a series of three papers. This second one applies the powerful tool of trigonometric Diophantine equations to classify the case of \\n \\n \\n \\n$a^3b$\\n\\n \\n -quadrilaterals with all angles being rational degrees. There are \\n \\n \\n \\n$12$\\n\\n \\n sporadic and \\n \\n \\n \\n$3$\\n\\n \\n infinite sequences of quadrilaterals admitting the two-layer earth map tilings together with their modifications, and \\n \\n \\n \\n$3$\\n\\n \\n sporadic quadrilaterals admitting \\n \\n \\n \\n$4$\\n\\n \\n exceptional tilings. Among them only three quadrilaterals are convex. New interesting non-edge-to-edge triangular tilings are obtained as a byproduct.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.20\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.20","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在三篇文章中,对球面的等同四边形的边缘到边缘的平铺进行了完整的分类。第二个例子运用了三角丢番图方程的强大工具,对所有角都是有理角的a^3b -四边形进行分类。有$12$零星四边形序列和$3$无限四边形序列,包含两层地球地图贴图及其修改,以及$3$零星四边形序列包含$4$特殊贴图。其中只有三个四边形是凸的。新的有趣的非边缘到边缘的三角形瓷砖作为副产品获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TILINGS OF THE SPHERE BY CONGRUENT QUADRILATERALS II: EDGE COMBINATION WITH RATIONAL ANGLES
Edge-to-edge tilings of the sphere by congruent quadrilaterals are completely classified in a series of three papers. This second one applies the powerful tool of trigonometric Diophantine equations to classify the case of $a^3b$ -quadrilaterals with all angles being rational degrees. There are $12$ sporadic and $3$ infinite sequences of quadrilaterals admitting the two-layer earth map tilings together with their modifications, and $3$ sporadic quadrilaterals admitting $4$ exceptional tilings. Among them only three quadrilaterals are convex. New interesting non-edge-to-edge triangular tilings are obtained as a byproduct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信