基于预测物理的高k栅极介电体影响下纳米栅极全能场效应晶体管模拟

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
N. Moezi, Mohammad Karbalaei
{"title":"基于预测物理的高k栅极介电体影响下纳米栅极全能场效应晶体管模拟","authors":"N. Moezi, Mohammad Karbalaei","doi":"10.22052/JNS.2020.04.006","DOIUrl":null,"url":null,"abstract":"In this paper the electrical characteristics of a nano scale silicon gate-all-around field effect transistor (GAA-FET) with different dielectrics in the gate electrode are predicted. For this, we first calibrate physics based TCAD simulator against experimental results reported by IBM. Then the device electrical figures of merit comprised of ION/IOFF, transconductance (gm) and subthreshold slope (SS) are extracted. The obtained results show that utilizing various high-k gate dielectrics has a noticeable impact on the device performance. Different high-k gate dielectrics comprised of Al2O3, Si3N4 and HfO2 are explored in our study. Moreover, when high-k gate dielectric is used instead of conventional SiO2 insulator, the electrical characteristics will be improved in terms of ION/IOFF ratio, transconductance to drive current ratio (gm/IDS) and SS. Based on our simulations and obtained results, scaling GAA-FETs by utilizing high-k dielectrics offers superior electronic devices and promising candidates for “more Moore” domain and integrated circuit applications.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"736-743"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive physics based simulation of nano scale gate-all-around field effect transistor under the influence of high-k gate dielectrics\",\"authors\":\"N. Moezi, Mohammad Karbalaei\",\"doi\":\"10.22052/JNS.2020.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the electrical characteristics of a nano scale silicon gate-all-around field effect transistor (GAA-FET) with different dielectrics in the gate electrode are predicted. For this, we first calibrate physics based TCAD simulator against experimental results reported by IBM. Then the device electrical figures of merit comprised of ION/IOFF, transconductance (gm) and subthreshold slope (SS) are extracted. The obtained results show that utilizing various high-k gate dielectrics has a noticeable impact on the device performance. Different high-k gate dielectrics comprised of Al2O3, Si3N4 and HfO2 are explored in our study. Moreover, when high-k gate dielectric is used instead of conventional SiO2 insulator, the electrical characteristics will be improved in terms of ION/IOFF ratio, transconductance to drive current ratio (gm/IDS) and SS. Based on our simulations and obtained results, scaling GAA-FETs by utilizing high-k dielectrics offers superior electronic devices and promising candidates for “more Moore” domain and integrated circuit applications.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"736-743\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.04.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.04.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文预测了栅电极中具有不同电介质的纳米级硅栅全周场效应晶体管(GAA-FET)的电学特性。为此,我们首先根据IBM报告的实验结果校准了基于物理的TCAD模拟器。然后提取由ION/IOFF、跨导(gm)和亚阈值斜率(SS)组成的器件电品质因数。结果表明,使用各种高k栅极电介质对器件性能有显著影响。在我们的研究中探索了由Al2O3、Si3N4和HfO2组成的不同的高k栅极电介质。此外,当使用高k栅极电介质代替传统的SiO2绝缘体时,电特性将在ION/IOFF比、跨导与驱动电流比(gm/IDS)和SS方面得到改善。基于我们的模拟和获得的结果,通过利用高k电介质来缩放GAA-FET提供了优越的电子器件,并有望用于“更多摩尔”域和集成电路应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive physics based simulation of nano scale gate-all-around field effect transistor under the influence of high-k gate dielectrics
In this paper the electrical characteristics of a nano scale silicon gate-all-around field effect transistor (GAA-FET) with different dielectrics in the gate electrode are predicted. For this, we first calibrate physics based TCAD simulator against experimental results reported by IBM. Then the device electrical figures of merit comprised of ION/IOFF, transconductance (gm) and subthreshold slope (SS) are extracted. The obtained results show that utilizing various high-k gate dielectrics has a noticeable impact on the device performance. Different high-k gate dielectrics comprised of Al2O3, Si3N4 and HfO2 are explored in our study. Moreover, when high-k gate dielectric is used instead of conventional SiO2 insulator, the electrical characteristics will be improved in terms of ION/IOFF ratio, transconductance to drive current ratio (gm/IDS) and SS. Based on our simulations and obtained results, scaling GAA-FETs by utilizing high-k dielectrics offers superior electronic devices and promising candidates for “more Moore” domain and integrated circuit applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信