利用长短期记忆网络(LSTM)重建塞纳河缺失的水位数据

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES
Imad Janbain, J. Deloffre, A. Jardani, M. Vu, N. Massei
{"title":"利用长短期记忆网络(LSTM)重建塞纳河缺失的水位数据","authors":"Imad Janbain, J. Deloffre, A. Jardani, M. Vu, N. Massei","doi":"10.1080/02626667.2023.2221791","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper aims to fill in the missing time series of hourly surface water levels of some stations installed along the River Seine, using the long short-term memory (LSTM) algorithm. In our study, only the water level data from the same station, containing many missing parts, were used as input and output variables, in contrast to other works where several features are available to take advantage of e.g. other station data/physical variables. A sensitive analysis is presented on both the network properties and how the input and output data are reentered to better determine the appropriate strategy. Numerous scenarios are presented, each an updated version of the previous one. Ultimately, the final version of the model can impute missing values of up to one year of hourly data with great flexibility (one-year Root-Mean-Square Error (RMSE) = 0.14 m) regardless of the location of the missing gaps in the series or their size. Graphical abstract","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":"68 1","pages":"1372 - 1390"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Use of long short-term memory network (LSTM) in the reconstruction of missing water level data in the River Seine\",\"authors\":\"Imad Janbain, J. Deloffre, A. Jardani, M. Vu, N. Massei\",\"doi\":\"10.1080/02626667.2023.2221791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper aims to fill in the missing time series of hourly surface water levels of some stations installed along the River Seine, using the long short-term memory (LSTM) algorithm. In our study, only the water level data from the same station, containing many missing parts, were used as input and output variables, in contrast to other works where several features are available to take advantage of e.g. other station data/physical variables. A sensitive analysis is presented on both the network properties and how the input and output data are reentered to better determine the appropriate strategy. Numerous scenarios are presented, each an updated version of the previous one. Ultimately, the final version of the model can impute missing values of up to one year of hourly data with great flexibility (one-year Root-Mean-Square Error (RMSE) = 0.14 m) regardless of the location of the missing gaps in the series or their size. Graphical abstract\",\"PeriodicalId\":55042,\"journal\":{\"name\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"volume\":\"68 1\",\"pages\":\"1372 - 1390\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2023.2221791\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2221791","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文旨在利用长短期记忆(LSTM)算法,对塞纳河沿岸部分站点逐时地面水位序列进行补全。在我们的研究中,只使用了同一站点的水位数据作为输入和输出变量,其中包含许多缺失的部分,而其他作品中有几个特征可以利用,例如其他站点数据/物理变量。本文对网络属性以及输入和输出数据如何重新输入进行了敏感分析,以更好地确定适当的策略。提出了许多场景,每个场景都是前一个场景的更新版本。最终,模型的最终版本可以以极大的灵活性(一年的均方根误差(RMSE) = 0.14 m)推算出长达一年的每小时数据的缺失值,而不考虑序列中缺失缺口的位置或大小。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of long short-term memory network (LSTM) in the reconstruction of missing water level data in the River Seine
ABSTRACT This paper aims to fill in the missing time series of hourly surface water levels of some stations installed along the River Seine, using the long short-term memory (LSTM) algorithm. In our study, only the water level data from the same station, containing many missing parts, were used as input and output variables, in contrast to other works where several features are available to take advantage of e.g. other station data/physical variables. A sensitive analysis is presented on both the network properties and how the input and output data are reentered to better determine the appropriate strategy. Numerous scenarios are presented, each an updated version of the previous one. Ultimately, the final version of the model can impute missing values of up to one year of hourly data with great flexibility (one-year Root-Mean-Square Error (RMSE) = 0.14 m) regardless of the location of the missing gaps in the series or their size. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信