B. Kalantari, Yikai Zhang
求助PDF
{"title":"算法xxx:球面三角形算法:凸壳成员查询的快速Oracle","authors":"B. Kalantari, Yikai Zhang","doi":"10.1145/3516520","DOIUrl":null,"url":null,"abstract":"<jats:p>\n The\n <jats:italic>Convex Hull Membership</jats:italic>\n (CHM) tests whether\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n , where\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\)</jats:tex-math>\n </jats:inline-formula>\n and the\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(n \\)</jats:tex-math>\n </jats:inline-formula>\n points of\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(S \\)</jats:tex-math>\n </jats:inline-formula>\n lie in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\mathbb { R}^m \\)</jats:tex-math>\n </jats:inline-formula>\n . CHM finds applications in Linear Programming, Computational Geometry and Machine Learning. The\n <jats:italic>Triangle Algorithm</jats:italic>\n (TA), previously developed, in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(1/\\varepsilon ^2) \\)</jats:tex-math>\n </jats:inline-formula>\n iterations computes\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p^{\\prime } \\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n , either an\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n -\n <jats:italic>approximate solution</jats:italic>\n , or a\n <jats:italic>witness</jats:italic>\n certifying\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p \\not\\in conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n . We first prove the equivalence of exact and approximate versions of CHM and\n <jats:italic>Spherical</jats:italic>\n -CHM, where\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(p=0 \\)</jats:tex-math>\n </jats:inline-formula>\n and\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert v\\Vert =1 \\)</jats:tex-math>\n </jats:inline-formula>\n for each\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(v \\)</jats:tex-math>\n </jats:inline-formula>\n in\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(S \\)</jats:tex-math>\n </jats:inline-formula>\n . If for some\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(M \\ge 1 \\)</jats:tex-math>\n </jats:inline-formula>\n every non-witness with\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert p^{\\prime }\\Vert \\gt \\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n admits\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(v \\in S \\)</jats:tex-math>\n </jats:inline-formula>\n satisfying\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Vert p^{\\prime } - v\\Vert \\ge \\sqrt {1+\\varepsilon /M} \\)</jats:tex-math>\n </jats:inline-formula>\n , we prove the number of iterations improves to\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(M/\\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n and\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(M \\le 1/\\varepsilon \\)</jats:tex-math>\n </jats:inline-formula>\n always holds. Equivalence of CHM and Spherical-CHM implies\n <jats:italic>Minimum Enclosing Ball</jats:italic>\n (MEB) algorithms can be modified to solve CHM. However, we prove\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\((1+ \\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n -approximation in MEB is\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(\\Omega (\\sqrt {\\varepsilon }) \\)</jats:tex-math>\n </jats:inline-formula>\n -approximation in Spherical-CHM. Thus even\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(O(1/\\varepsilon) \\)</jats:tex-math>\n </jats:inline-formula>\n iteration MEB algorithms are not superior to Spherical-TA. Similar weakness is proved for MEB core sets. Spherical-TA also results a variant of the\n <jats:italic>All Vertex Triangle Algorithm</jats:italic>\n (AVTA) for computing all vertices of\n <jats:inline-formula content-type=\"math/tex\">\n <jats:tex-math notation=\"TeX\" version=\"MathJaX\">\\(conv(S) \\)</jats:tex-math>\n </jats:inline-formula>\n . Substantial computations on distinct problems demonstrate that TA and Spherical-TA generally achieve superior efficiency over algorithms such as Frank-Wolfe, MEB and LP-Solver.\n </jats:p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algorithm xxx: Spherical Triangle Algorithm: A Fast Oracle for Convex Hull Membership Queries\",\"authors\":\"B. Kalantari, Yikai Zhang\",\"doi\":\"10.1145/3516520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>\\n The\\n <jats:italic>Convex Hull Membership</jats:italic>\\n (CHM) tests whether\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(p \\\\in conv(S) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n , where\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(p \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n and the\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(n \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n points of\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(S \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n lie in\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\mathbb { R}^m \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n . CHM finds applications in Linear Programming, Computational Geometry and Machine Learning. The\\n <jats:italic>Triangle Algorithm</jats:italic>\\n (TA), previously developed, in\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(O(1/\\\\varepsilon ^2) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n iterations computes\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(p^{\\\\prime } \\\\in conv(S) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n , either an\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\varepsilon \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n -\\n <jats:italic>approximate solution</jats:italic>\\n , or a\\n <jats:italic>witness</jats:italic>\\n certifying\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(p \\\\not\\\\in conv(S) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n . We first prove the equivalence of exact and approximate versions of CHM and\\n <jats:italic>Spherical</jats:italic>\\n -CHM, where\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(p=0 \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n and\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\Vert v\\\\Vert =1 \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n for each\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(v \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n in\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(S \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n . If for some\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(M \\\\ge 1 \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n every non-witness with\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\Vert p^{\\\\prime }\\\\Vert \\\\gt \\\\varepsilon \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n admits\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(v \\\\in S \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n satisfying\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\Vert p^{\\\\prime } - v\\\\Vert \\\\ge \\\\sqrt {1+\\\\varepsilon /M} \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n , we prove the number of iterations improves to\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(O(M/\\\\varepsilon) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n and\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(M \\\\le 1/\\\\varepsilon \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n always holds. Equivalence of CHM and Spherical-CHM implies\\n <jats:italic>Minimum Enclosing Ball</jats:italic>\\n (MEB) algorithms can be modified to solve CHM. However, we prove\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\((1+ \\\\varepsilon) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n -approximation in MEB is\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(\\\\Omega (\\\\sqrt {\\\\varepsilon }) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n -approximation in Spherical-CHM. Thus even\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(O(1/\\\\varepsilon) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n iteration MEB algorithms are not superior to Spherical-TA. Similar weakness is proved for MEB core sets. Spherical-TA also results a variant of the\\n <jats:italic>All Vertex Triangle Algorithm</jats:italic>\\n (AVTA) for computing all vertices of\\n <jats:inline-formula content-type=\\\"math/tex\\\">\\n <jats:tex-math notation=\\\"TeX\\\" version=\\\"MathJaX\\\">\\\\(conv(S) \\\\)</jats:tex-math>\\n </jats:inline-formula>\\n . Substantial computations on distinct problems demonstrate that TA and Spherical-TA generally achieve superior efficiency over algorithms such as Frank-Wolfe, MEB and LP-Solver.\\n </jats:p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3516520\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3516520","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
引用
批量引用
Algorithm xxx: Spherical Triangle Algorithm: A Fast Oracle for Convex Hull Membership Queries
The
Convex Hull Membership
(CHM) tests whether
\(p \in conv(S) \)
, where
\(p \)
and the
\(n \)
points of
\(S \)
lie in
\(\mathbb { R}^m \)
. CHM finds applications in Linear Programming, Computational Geometry and Machine Learning. The
Triangle Algorithm
(TA), previously developed, in
\(O(1/\varepsilon ^2) \)
iterations computes
\(p^{\prime } \in conv(S) \)
, either an
\(\varepsilon \)
-
approximate solution
, or a
witness
certifying
\(p \not\in conv(S) \)
. We first prove the equivalence of exact and approximate versions of CHM and
Spherical
-CHM, where
\(p=0 \)
and
\(\Vert v\Vert =1 \)
for each
\(v \)
in
\(S \)
. If for some
\(M \ge 1 \)
every non-witness with
\(\Vert p^{\prime }\Vert \gt \varepsilon \)
admits
\(v \in S \)
satisfying
\(\Vert p^{\prime } - v\Vert \ge \sqrt {1+\varepsilon /M} \)
, we prove the number of iterations improves to
\(O(M/\varepsilon) \)
and
\(M \le 1/\varepsilon \)
always holds. Equivalence of CHM and Spherical-CHM implies
Minimum Enclosing Ball
(MEB) algorithms can be modified to solve CHM. However, we prove
\((1+ \varepsilon) \)
-approximation in MEB is
\(\Omega (\sqrt {\varepsilon }) \)
-approximation in Spherical-CHM. Thus even
\(O(1/\varepsilon) \)
iteration MEB algorithms are not superior to Spherical-TA. Similar weakness is proved for MEB core sets. Spherical-TA also results a variant of the
All Vertex Triangle Algorithm
(AVTA) for computing all vertices of
\(conv(S) \)
. Substantial computations on distinct problems demonstrate that TA and Spherical-TA generally achieve superior efficiency over algorithms such as Frank-Wolfe, MEB and LP-Solver.