Xuesong Zhai, Jiaqi Xu, Nian-Shing Chen, Jun Shen, Yan Li, Yonggu Wang, Xiaoyan Chu, Yumeng Zhu
{"title":"网络学习环境下双源数据对情感计算的融合效应——基于注意机制的卷积神经网络","authors":"Xuesong Zhai, Jiaqi Xu, Nian-Shing Chen, Jun Shen, Yan Li, Yonggu Wang, Xiaoyan Chu, Yumeng Zhu","doi":"10.1177/07356331221115663","DOIUrl":null,"url":null,"abstract":"Affective computing (AC) has been regarded as a relevant approach to identifying online learners’ mental states and predicting their learning performance. Previous research mainly used one single-source data set, typically learners’ facial expression, to compute learners’ affection. However, a single facial expression may represent different affections in various head poses. This study proposed a dual-source data approach to solve the problem. Facial expression and head pose are two typical data sources that can be captured from online learning videos. The current study collected a dual-source data set of facial expressions and head poses from an online learning class in a middle school. A deep learning neural network using AlexNet with an attention mechanism was developed to verify the syncretic effect on affective computing of the proposed dual-source fusion strategy. The results show that the dual-source fusion approach significantly outperforms the single-source approach based on the AC recognition accuracy between the two approaches (dual-source approach using Attention-AlexNet model 80.96%; single-source approach, facial expression 76.65% and head pose 64.34%). This study contributes to the theoretical construction of the dual-source data fusion approach, and the empirical validation of the effect of the Attention-AlexNet neural network approach on affective computing in online learning contexts.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"61 1","pages":"466 - 493"},"PeriodicalIF":4.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Syncretic Effect of Dual-Source Data on Affective Computing in Online Learning Contexts: A Perspective From Convolutional Neural Network With Attention Mechanism\",\"authors\":\"Xuesong Zhai, Jiaqi Xu, Nian-Shing Chen, Jun Shen, Yan Li, Yonggu Wang, Xiaoyan Chu, Yumeng Zhu\",\"doi\":\"10.1177/07356331221115663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective computing (AC) has been regarded as a relevant approach to identifying online learners’ mental states and predicting their learning performance. Previous research mainly used one single-source data set, typically learners’ facial expression, to compute learners’ affection. However, a single facial expression may represent different affections in various head poses. This study proposed a dual-source data approach to solve the problem. Facial expression and head pose are two typical data sources that can be captured from online learning videos. The current study collected a dual-source data set of facial expressions and head poses from an online learning class in a middle school. A deep learning neural network using AlexNet with an attention mechanism was developed to verify the syncretic effect on affective computing of the proposed dual-source fusion strategy. The results show that the dual-source fusion approach significantly outperforms the single-source approach based on the AC recognition accuracy between the two approaches (dual-source approach using Attention-AlexNet model 80.96%; single-source approach, facial expression 76.65% and head pose 64.34%). This study contributes to the theoretical construction of the dual-source data fusion approach, and the empirical validation of the effect of the Attention-AlexNet neural network approach on affective computing in online learning contexts.\",\"PeriodicalId\":47865,\"journal\":{\"name\":\"Journal of Educational Computing Research\",\"volume\":\"61 1\",\"pages\":\"466 - 493\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Computing Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1177/07356331221115663\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1177/07356331221115663","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
The Syncretic Effect of Dual-Source Data on Affective Computing in Online Learning Contexts: A Perspective From Convolutional Neural Network With Attention Mechanism
Affective computing (AC) has been regarded as a relevant approach to identifying online learners’ mental states and predicting their learning performance. Previous research mainly used one single-source data set, typically learners’ facial expression, to compute learners’ affection. However, a single facial expression may represent different affections in various head poses. This study proposed a dual-source data approach to solve the problem. Facial expression and head pose are two typical data sources that can be captured from online learning videos. The current study collected a dual-source data set of facial expressions and head poses from an online learning class in a middle school. A deep learning neural network using AlexNet with an attention mechanism was developed to verify the syncretic effect on affective computing of the proposed dual-source fusion strategy. The results show that the dual-source fusion approach significantly outperforms the single-source approach based on the AC recognition accuracy between the two approaches (dual-source approach using Attention-AlexNet model 80.96%; single-source approach, facial expression 76.65% and head pose 64.34%). This study contributes to the theoretical construction of the dual-source data fusion approach, and the empirical validation of the effect of the Attention-AlexNet neural network approach on affective computing in online learning contexts.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.