生成分区的线性类别

IF 0.5 4区 数学 Q3 MATHEMATICS
Daniel Gromada, Moritz Weber
{"title":"生成分区的线性类别","authors":"Daniel Gromada, Moritz Weber","doi":"10.1215/21562261-2022-0028","DOIUrl":null,"url":null,"abstract":"We present an algorithm for approximating linear categories of partitions (of sets). We report on concrete computer experiments based on this algorithm and how we found new examples of compact matrix quantum groups (so called \"non-easy\" quantum groups) with it. This also led to further theoretical insights regarding the representation theory of such quantum groups. We interpret some of the new categories constructing anticommutative twists of quantum groups.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generating linear categories of partitions\",\"authors\":\"Daniel Gromada, Moritz Weber\",\"doi\":\"10.1215/21562261-2022-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for approximating linear categories of partitions (of sets). We report on concrete computer experiments based on this algorithm and how we found new examples of compact matrix quantum groups (so called \\\"non-easy\\\" quantum groups) with it. This also led to further theoretical insights regarding the representation theory of such quantum groups. We interpret some of the new categories constructing anticommutative twists of quantum groups.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种近似划分(集合)线性类别的算法。我们报告了基于该算法的具体计算机实验,以及我们如何用它找到紧矩阵量子群(所谓的“非易”量子群)的新例子。这也导致了关于这种量子群的表示理论的进一步的理论见解。我们解释了构造量子群的反交换扭曲的一些新范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating linear categories of partitions
We present an algorithm for approximating linear categories of partitions (of sets). We report on concrete computer experiments based on this algorithm and how we found new examples of compact matrix quantum groups (so called "non-easy" quantum groups) with it. This also led to further theoretical insights regarding the representation theory of such quantum groups. We interpret some of the new categories constructing anticommutative twists of quantum groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信