{"title":"具有光滑解的广义时间分数阶扩散方程的二阶差分格式","authors":"A. Khibiev, A. Alikhanov, Chengming Huang","doi":"10.1515/cmam-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract In the current work, we build a difference analog of the Caputo fractional derivative with generalized memory kernel (𝜇L2-1𝜎 formula). The fundamental features of this difference operator are studied, and on its ground, some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid L 2 L_{2} -norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions\",\"authors\":\"A. Khibiev, A. Alikhanov, Chengming Huang\",\"doi\":\"10.1515/cmam-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the current work, we build a difference analog of the Caputo fractional derivative with generalized memory kernel (𝜇L2-1𝜎 formula). The fundamental features of this difference operator are studied, and on its ground, some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid L 2 L_{2} -norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions
Abstract In the current work, we build a difference analog of the Caputo fractional derivative with generalized memory kernel (𝜇L2-1𝜎 formula). The fundamental features of this difference operator are studied, and on its ground, some difference schemes generating approximations of the second order in time for the generalized time-fractional diffusion equation with variable coefficients are worked out. We have proved stability and convergence of the given schemes in the grid L 2 L_{2} -norm with the rate equal to the order of the approximation error. The achieved results are supported by the numerical computations performed for some test problems.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.