{"title":"使用电阻率和感应极化方法表征潜在的铜-金矿化:以菲律宾比科尔东部拉博为例","authors":"M. A. A. Casulla, H. Mizunaga","doi":"10.1093/jge/gxad018","DOIUrl":null,"url":null,"abstract":"\n Electrical resistivity and induced polarization (ER-IP) surveys were carried out in Eastern Labo, Bicol, Philippines, to assess the potential Cu-Au mineralization in pyroclastic-covered areas. An electrical resistivity tomography method with a dipole–dipole array was used, and the L1 norm (robust) inversion approach was employed to generate the 16 2D ER-IP models. The analysis of the resistivity and chargeability classified the underlying lithology into eight zones. Zones from C to F are the potential mineralized zones, while Zones A and B (Labo Volcanic Complex) and Zones G and H (Tumbaga Formation and Tamisan Diorite) are the non-mineralized zones. Zone C, represented by low chargeability (<15 mV V−1) and intermediate resistivity (15–100 Ω-m) values, is characterized by a high concentration of disseminated sulfide minerals (e.g. chalcopyrite). Zone D has a chargeability range comparable to Zone C but higher resistivity (>100 Ω-m), which might be due to silicification. Zone E corresponds to the oxide zone with concentrated sulfide minerals along clayey, weathered, fractured areas; it has moderate to high chargeability (>15 mV V−1) and low resistivity (<15 Ω-m) signatures. Zone F has a similar resistivity range to Zone E but has lower chargeability (<15 mV V−1) values. The interpreted underlying lithological units were confirmed using borehole data. Because of the extensive occurrence of high chargeability zones with moderate resistivity anomalies, potentially mineralized areas for further investigation (e.g. drilling) were identified in the north-eastern portion of the study area.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of potential Cu-Au mineralization using electrical resistivity and induced polarization methods: a case study in Eastern Labo, Bicol, Philippines\",\"authors\":\"M. A. A. Casulla, H. Mizunaga\",\"doi\":\"10.1093/jge/gxad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electrical resistivity and induced polarization (ER-IP) surveys were carried out in Eastern Labo, Bicol, Philippines, to assess the potential Cu-Au mineralization in pyroclastic-covered areas. An electrical resistivity tomography method with a dipole–dipole array was used, and the L1 norm (robust) inversion approach was employed to generate the 16 2D ER-IP models. The analysis of the resistivity and chargeability classified the underlying lithology into eight zones. Zones from C to F are the potential mineralized zones, while Zones A and B (Labo Volcanic Complex) and Zones G and H (Tumbaga Formation and Tamisan Diorite) are the non-mineralized zones. Zone C, represented by low chargeability (<15 mV V−1) and intermediate resistivity (15–100 Ω-m) values, is characterized by a high concentration of disseminated sulfide minerals (e.g. chalcopyrite). Zone D has a chargeability range comparable to Zone C but higher resistivity (>100 Ω-m), which might be due to silicification. Zone E corresponds to the oxide zone with concentrated sulfide minerals along clayey, weathered, fractured areas; it has moderate to high chargeability (>15 mV V−1) and low resistivity (<15 Ω-m) signatures. Zone F has a similar resistivity range to Zone E but has lower chargeability (<15 mV V−1) values. The interpreted underlying lithological units were confirmed using borehole data. Because of the extensive occurrence of high chargeability zones with moderate resistivity anomalies, potentially mineralized areas for further investigation (e.g. drilling) were identified in the north-eastern portion of the study area.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad018\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Characterization of potential Cu-Au mineralization using electrical resistivity and induced polarization methods: a case study in Eastern Labo, Bicol, Philippines
Electrical resistivity and induced polarization (ER-IP) surveys were carried out in Eastern Labo, Bicol, Philippines, to assess the potential Cu-Au mineralization in pyroclastic-covered areas. An electrical resistivity tomography method with a dipole–dipole array was used, and the L1 norm (robust) inversion approach was employed to generate the 16 2D ER-IP models. The analysis of the resistivity and chargeability classified the underlying lithology into eight zones. Zones from C to F are the potential mineralized zones, while Zones A and B (Labo Volcanic Complex) and Zones G and H (Tumbaga Formation and Tamisan Diorite) are the non-mineralized zones. Zone C, represented by low chargeability (<15 mV V−1) and intermediate resistivity (15–100 Ω-m) values, is characterized by a high concentration of disseminated sulfide minerals (e.g. chalcopyrite). Zone D has a chargeability range comparable to Zone C but higher resistivity (>100 Ω-m), which might be due to silicification. Zone E corresponds to the oxide zone with concentrated sulfide minerals along clayey, weathered, fractured areas; it has moderate to high chargeability (>15 mV V−1) and low resistivity (<15 Ω-m) signatures. Zone F has a similar resistivity range to Zone E but has lower chargeability (<15 mV V−1) values. The interpreted underlying lithological units were confirmed using borehole data. Because of the extensive occurrence of high chargeability zones with moderate resistivity anomalies, potentially mineralized areas for further investigation (e.g. drilling) were identified in the north-eastern portion of the study area.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.