Hernindya Dwifulqi, Rosalina Tjandrawinata, Joko Kusnoto
{"title":"甘蔗渣纤维增强纤维素纳米晶对玻璃离聚物水泥硬度的影响","authors":"Hernindya Dwifulqi, Rosalina Tjandrawinata, Joko Kusnoto","doi":"10.4103/SDJ.SDJ_53_20","DOIUrl":null,"url":null,"abstract":"Background: Advances in nanotechnology research make the use of cellulose nanocrystals (CNCs) attractive for improving the mechanical properties of glass ionomer cement (GIC). Sugarcane bagasse (Saccharum officinarum L.) is a CNCs source with a high CNC content (72.5%). Objective: This study aimed to determine the effect of the addition of sugarcane bagasse CNCs on the mechanical properties of GIC. Methods: In total, 42 GIC (Fuji IX, GC, Japan) samples were divided into six groups, with various concentrations of CNCs, added to the samples. After 24 h immersion in distilled water at 37°C, the samples were analyzed using the Vickers hardness test. The samples were also characterized by transmission electron microscopy (TEM). For statistical analysis, a one-way analysis of variance, followed by Tukey's post hoc test, was applied. A value of P < 0.05 denoted statistical significance. Results: The TEM revealed crystalline particles in the form of nanocrystals, with varying particle sizes (lengths of 100–200 nm and diameters of 4–19 nm). The addition of 0.4% of CNCS from bagasse fiber to GIC increased the Vickers hardness of the material by 38.89% (P < 0.05). Conclusion: The addition of 0.4% of sugarcane bagasse can improve the hardness of GIC.","PeriodicalId":32049,"journal":{"name":"Scientific Dental Journal","volume":"5 1","pages":"33 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effects of reinforced cellulose nanocrystals from sugarcane bagasse fiber on the hardness of glass ionomer cements\",\"authors\":\"Hernindya Dwifulqi, Rosalina Tjandrawinata, Joko Kusnoto\",\"doi\":\"10.4103/SDJ.SDJ_53_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Advances in nanotechnology research make the use of cellulose nanocrystals (CNCs) attractive for improving the mechanical properties of glass ionomer cement (GIC). Sugarcane bagasse (Saccharum officinarum L.) is a CNCs source with a high CNC content (72.5%). Objective: This study aimed to determine the effect of the addition of sugarcane bagasse CNCs on the mechanical properties of GIC. Methods: In total, 42 GIC (Fuji IX, GC, Japan) samples were divided into six groups, with various concentrations of CNCs, added to the samples. After 24 h immersion in distilled water at 37°C, the samples were analyzed using the Vickers hardness test. The samples were also characterized by transmission electron microscopy (TEM). For statistical analysis, a one-way analysis of variance, followed by Tukey's post hoc test, was applied. A value of P < 0.05 denoted statistical significance. Results: The TEM revealed crystalline particles in the form of nanocrystals, with varying particle sizes (lengths of 100–200 nm and diameters of 4–19 nm). The addition of 0.4% of CNCS from bagasse fiber to GIC increased the Vickers hardness of the material by 38.89% (P < 0.05). Conclusion: The addition of 0.4% of sugarcane bagasse can improve the hardness of GIC.\",\"PeriodicalId\":32049,\"journal\":{\"name\":\"Scientific Dental Journal\",\"volume\":\"5 1\",\"pages\":\"33 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Dental Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/SDJ.SDJ_53_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Dental Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/SDJ.SDJ_53_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of reinforced cellulose nanocrystals from sugarcane bagasse fiber on the hardness of glass ionomer cements
Background: Advances in nanotechnology research make the use of cellulose nanocrystals (CNCs) attractive for improving the mechanical properties of glass ionomer cement (GIC). Sugarcane bagasse (Saccharum officinarum L.) is a CNCs source with a high CNC content (72.5%). Objective: This study aimed to determine the effect of the addition of sugarcane bagasse CNCs on the mechanical properties of GIC. Methods: In total, 42 GIC (Fuji IX, GC, Japan) samples were divided into six groups, with various concentrations of CNCs, added to the samples. After 24 h immersion in distilled water at 37°C, the samples were analyzed using the Vickers hardness test. The samples were also characterized by transmission electron microscopy (TEM). For statistical analysis, a one-way analysis of variance, followed by Tukey's post hoc test, was applied. A value of P < 0.05 denoted statistical significance. Results: The TEM revealed crystalline particles in the form of nanocrystals, with varying particle sizes (lengths of 100–200 nm and diameters of 4–19 nm). The addition of 0.4% of CNCS from bagasse fiber to GIC increased the Vickers hardness of the material by 38.89% (P < 0.05). Conclusion: The addition of 0.4% of sugarcane bagasse can improve the hardness of GIC.