奇摄动微分-差分方程的指数拟合数值方法

IF 1.4 Q2 MATHEMATICS, APPLIED
H. Debela, Solomon Bati Kejela, Ayana Deressa Negassa
{"title":"奇摄动微分-差分方程的指数拟合数值方法","authors":"H. Debela, Solomon Bati Kejela, Ayana Deressa Negassa","doi":"10.1155/2020/5768323","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical method to solve singularly perturbed differential-difference equations. The solution of this problem exhibits layer or oscillatory behavior depending on the sign of the sum of the coefficients in reaction terms. A fourth-order exponentially fitted numerical scheme on uniform mesh is developed. The stability and convergence of the proposed method have been established. The effect of delay parameter (small shift) on the boundary layer(s) has also been analyzed and depicted in graphs. The applicability of the proposed scheme is validated by implementing it on four model examples. Maximum absolute errors in comparison with the other numerical experiments are tabulated to illustrate the proposed method.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2020 1","pages":"1-13"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5768323","citationCount":"4","resultStr":"{\"title\":\"Exponentially Fitted Numerical Method for Singularly Perturbed Differential-Difference Equations\",\"authors\":\"H. Debela, Solomon Bati Kejela, Ayana Deressa Negassa\",\"doi\":\"10.1155/2020/5768323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical method to solve singularly perturbed differential-difference equations. The solution of this problem exhibits layer or oscillatory behavior depending on the sign of the sum of the coefficients in reaction terms. A fourth-order exponentially fitted numerical scheme on uniform mesh is developed. The stability and convergence of the proposed method have been established. The effect of delay parameter (small shift) on the boundary layer(s) has also been analyzed and depicted in graphs. The applicability of the proposed scheme is validated by implementing it on four model examples. Maximum absolute errors in comparison with the other numerical experiments are tabulated to illustrate the proposed method.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"2020 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/5768323\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/5768323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5768323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种求解奇摄动微分差分方程的数值方法。这个问题的解表现出分层或振荡行为,这取决于反应项中系数之和的符号。提出了一种均匀网格上的四阶指数拟合数值格式。建立了该方法的稳定性和收敛性。还分析了延迟参数(小偏移)对边界层的影响,并在图中进行了描述。通过四个模型实例验证了该方案的适用性。表中列出了与其他数值实验相比的最大绝对误差,以说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponentially Fitted Numerical Method for Singularly Perturbed Differential-Difference Equations
This paper presents a numerical method to solve singularly perturbed differential-difference equations. The solution of this problem exhibits layer or oscillatory behavior depending on the sign of the sum of the coefficients in reaction terms. A fourth-order exponentially fitted numerical scheme on uniform mesh is developed. The stability and convergence of the proposed method have been established. The effect of delay parameter (small shift) on the boundary layer(s) has also been analyzed and depicted in graphs. The applicability of the proposed scheme is validated by implementing it on four model examples. Maximum absolute errors in comparison with the other numerical experiments are tabulated to illustrate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信