Collatz序列与特征零一字符串:3x+1问题的进展

D. C. Kay
{"title":"Collatz序列与特征零一字符串:3x+1问题的进展","authors":"D. C. Kay","doi":"10.4236/ajcm.2021.113015","DOIUrl":null,"url":null,"abstract":"The unsolved number theory problem known as the 3x + 1 problem involves \nsequences of positive integers generated more or less at random that seem to \nalways converge to 1. Here the connection between the first integer (n) and the last (m) of a 3x + 1 sequence is analyzed by \nmeans of characteristic zero-one strings. This method is used to achieve some \nprogress on the 3x + 1 problem. In particular, the long-standing conjecture that nontrivial cycles do not exist is virtually \nproved using probability theory.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem\",\"authors\":\"D. C. Kay\",\"doi\":\"10.4236/ajcm.2021.113015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsolved number theory problem known as the 3x + 1 problem involves \\nsequences of positive integers generated more or less at random that seem to \\nalways converge to 1. Here the connection between the first integer (n) and the last (m) of a 3x + 1 sequence is analyzed by \\nmeans of characteristic zero-one strings. This method is used to achieve some \\nprogress on the 3x + 1 problem. In particular, the long-standing conjecture that nontrivial cycles do not exist is virtually \\nproved using probability theory.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2021.113015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2021.113015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

未解决的数论问题3x + 1问题涉及到或多或少随机生成的正整数序列,这些序列似乎总是收敛于1。这里通过特征0 - 1字符串分析了3x + 1序列的第一个整数(n)和最后一个整数(m)之间的联系。这种方法用于在3x + 1问题上取得一些进展。特别是,长期存在的非平凡循环不存在的猜想实际上是用概率论证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem
The unsolved number theory problem known as the 3x + 1 problem involves sequences of positive integers generated more or less at random that seem to always converge to 1. Here the connection between the first integer (n) and the last (m) of a 3x + 1 sequence is analyzed by means of characteristic zero-one strings. This method is used to achieve some progress on the 3x + 1 problem. In particular, the long-standing conjecture that nontrivial cycles do not exist is virtually proved using probability theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信