紧致算子空间上泛函保模扩张的唯一性

IF 0.3 4区 数学 Q4 MATHEMATICS
Julia Martsinkevitš, M. Põldvere
{"title":"紧致算子空间上泛函保模扩张的唯一性","authors":"Julia Martsinkevitš, M. Põldvere","doi":"10.7146/math.scand.a-112071","DOIUrl":null,"url":null,"abstract":"Godefroy, Kalton, and Saphar called a closed subspace $Y$ of a Banach space $Z$ an ideal if its annihilator $Y^\\bot $ is the kernel of a norm-one projection $P$ on the dual space $Z^\\ast $. If $Y$ is an ideal in $Z$ with respect to a projection on $Z^\\ast $ whose range is norming for $Z$, then $Y$ is said to be a strict ideal. We study uniqueness of norm-preserving extensions of functionals on the space $\\mathcal{K}(X,Y) $ of compact operators between Banach spaces $X$ and $Y$ to the larger space $\\mathcal{K}(X,Z) $ under the assumption that $Y$ is a strict ideal in $Z$. Our main results are: (1) if $y^\\ast $ is an extreme point of $B_{Y^{\\ast} }$ having a unique norm-preserving extension to $Z$, and $x^{\\ast\\ast} \\in B_{X^{\\ast\\ast} }$, then the only norm-preserving extension of the functional $x^{\\ast\\ast} \\otimes y^\\ast \\in \\mathcal {K}(X,Y)^\\ast $ to $\\mathcal {K}(X,Z)$ is $x^{\\ast\\ast} \\otimes z^\\ast $ where $z^\\ast \\in Z^\\ast $ is the only norm-preserving extension of $y^\\ast $ to $Z$; (2) if $\\mathcal{K}(X,Y) $ is an ideal in $\\mathcal{K}(X,Z) $ and $Y$ has Phelps' property $U$ in its bidual $Y^{\\ast\\ast} $ (i.e., every bounded linear functional on $Y$ admits a unique norm-preserving extension to $Y^{\\ast\\ast} $), then $\\mathcal{K}(X,Y) $ has property $U$ in $\\mathcal{K}(X,Z) $ whenever $X^{\\ast\\ast} $ has the Radon-Nikodým property.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of norm-preserving extensions of functionals on the space of compact operators\",\"authors\":\"Julia Martsinkevitš, M. Põldvere\",\"doi\":\"10.7146/math.scand.a-112071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Godefroy, Kalton, and Saphar called a closed subspace $Y$ of a Banach space $Z$ an ideal if its annihilator $Y^\\\\bot $ is the kernel of a norm-one projection $P$ on the dual space $Z^\\\\ast $. If $Y$ is an ideal in $Z$ with respect to a projection on $Z^\\\\ast $ whose range is norming for $Z$, then $Y$ is said to be a strict ideal. We study uniqueness of norm-preserving extensions of functionals on the space $\\\\mathcal{K}(X,Y) $ of compact operators between Banach spaces $X$ and $Y$ to the larger space $\\\\mathcal{K}(X,Z) $ under the assumption that $Y$ is a strict ideal in $Z$. Our main results are: (1) if $y^\\\\ast $ is an extreme point of $B_{Y^{\\\\ast} }$ having a unique norm-preserving extension to $Z$, and $x^{\\\\ast\\\\ast} \\\\in B_{X^{\\\\ast\\\\ast} }$, then the only norm-preserving extension of the functional $x^{\\\\ast\\\\ast} \\\\otimes y^\\\\ast \\\\in \\\\mathcal {K}(X,Y)^\\\\ast $ to $\\\\mathcal {K}(X,Z)$ is $x^{\\\\ast\\\\ast} \\\\otimes z^\\\\ast $ where $z^\\\\ast \\\\in Z^\\\\ast $ is the only norm-preserving extension of $y^\\\\ast $ to $Z$; (2) if $\\\\mathcal{K}(X,Y) $ is an ideal in $\\\\mathcal{K}(X,Z) $ and $Y$ has Phelps' property $U$ in its bidual $Y^{\\\\ast\\\\ast} $ (i.e., every bounded linear functional on $Y$ admits a unique norm-preserving extension to $Y^{\\\\ast\\\\ast} $), then $\\\\mathcal{K}(X,Y) $ has property $U$ in $\\\\mathcal{K}(X,Z) $ whenever $X^{\\\\ast\\\\ast} $ has the Radon-Nikodým property.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-112071\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-112071","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Godefroy、Kalton和Saphar称Banach空间$Z$的闭子空间$Y$为理想,如果它的零化子$Y^\bot$是对偶空间$Z^\ast$上范数一投影$P$的核。如果$Y$是$Z$中的理想,相对于$Z^\ast$上的投影(其范围为$Z$的标准化),则$Y$被称为严格理想。在$Y$是$Z$中的严格理想的假设下,我们研究Banach空间$X$和$Y$之间的紧致算子的空间$\mathcal{K}(X,Y)$上的泛函的保模扩展到更大空间$\math cal{K}(X,Z)$的唯一性。我们的主要结果是:(1)如果$y^\ast$是$B_,则函数$x^{\ast\ast}\otimes y^\ast\in\mathcal{K}(x,y)^\ast$到$\mathcal{K}(x,Z;(2) 如果$\mathcal{K}(X,Y)$是$\mathical{K}(X,Z)$中的理想,并且$Y$在其bidual$Y^{\ast\ast}$中具有Phelps性质$U$(即,$Y$上的每个有界线性函数都允许对$Y^{\ast\aast}$的唯一范数保持扩展),那么每当$X^{\ ast\ast}$具有Radon Nikodým性质时,$\mathcal{K}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of norm-preserving extensions of functionals on the space of compact operators
Godefroy, Kalton, and Saphar called a closed subspace $Y$ of a Banach space $Z$ an ideal if its annihilator $Y^\bot $ is the kernel of a norm-one projection $P$ on the dual space $Z^\ast $. If $Y$ is an ideal in $Z$ with respect to a projection on $Z^\ast $ whose range is norming for $Z$, then $Y$ is said to be a strict ideal. We study uniqueness of norm-preserving extensions of functionals on the space $\mathcal{K}(X,Y) $ of compact operators between Banach spaces $X$ and $Y$ to the larger space $\mathcal{K}(X,Z) $ under the assumption that $Y$ is a strict ideal in $Z$. Our main results are: (1) if $y^\ast $ is an extreme point of $B_{Y^{\ast} }$ having a unique norm-preserving extension to $Z$, and $x^{\ast\ast} \in B_{X^{\ast\ast} }$, then the only norm-preserving extension of the functional $x^{\ast\ast} \otimes y^\ast \in \mathcal {K}(X,Y)^\ast $ to $\mathcal {K}(X,Z)$ is $x^{\ast\ast} \otimes z^\ast $ where $z^\ast \in Z^\ast $ is the only norm-preserving extension of $y^\ast $ to $Z$; (2) if $\mathcal{K}(X,Y) $ is an ideal in $\mathcal{K}(X,Z) $ and $Y$ has Phelps' property $U$ in its bidual $Y^{\ast\ast} $ (i.e., every bounded linear functional on $Y$ admits a unique norm-preserving extension to $Y^{\ast\ast} $), then $\mathcal{K}(X,Y) $ has property $U$ in $\mathcal{K}(X,Z) $ whenever $X^{\ast\ast} $ has the Radon-Nikodým property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信