基于模糊逻辑的微电网双向直流-直流变换器控制器

Q2 Computer Science
Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi
{"title":"基于模糊逻辑的微电网双向直流-直流变换器控制器","authors":"Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi","doi":"10.11591/ijece.v13i5.pp4789-4797","DOIUrl":null,"url":null,"abstract":"Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy logic-based controller of the bidirectional direct current to direct current converter in microgrid\",\"authors\":\"Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi\",\"doi\":\"10.11591/ijece.v13i5.pp4789-4797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4789-4797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4789-4797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

微电网是一种小型电力网络,包括可再生能源、负载、储能系统和能源管理系统(EMS)。锂离子电池是微电网中最常用的储能电池,因为它们比其他类型的电池具有优势。然而,为了保护电池免受爆炸,并根据充电状态(SoC)值管理充电和放电,这种类型的电池需要使用能量管理系统。本文的主要目标是提出一种用于微电网能量管理的智能控制策略,以控制锂离子电池的充放电,从而稳定系统并降低电网电力成本。所提出的技术是基于用于电压控制的模糊逻辑控制器(FLC)。FLC基于直流(DC)总线的测量电压和固定参考电压来产生降压/升压转换器信号控制。使用MATLAB/Simulink软件对所提出的技术进行了仿真和测试,该软件说明了所需功率和直流母线电压调节的跟踪。仿真结果表明,所提出的系统可以减小系统电压的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy logic-based controller of the bidirectional direct current to direct current converter in microgrid
Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信