Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi
{"title":"基于模糊逻辑的微电网双向直流-直流变换器控制器","authors":"Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi","doi":"10.11591/ijece.v13i5.pp4789-4797","DOIUrl":null,"url":null,"abstract":"Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy logic-based controller of the bidirectional direct current to direct current converter in microgrid\",\"authors\":\"Younes Boujoudar, M. Azeroual, Lahcen Eliysaouy, F. Z. Bassine, Aiman J. Albarakati, Ayman Aljarbouh, A. Knyazkov, Hassan El Moussaoui, T. Lamhamdi\",\"doi\":\"10.11591/ijece.v13i5.pp4789-4797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4789-4797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4789-4797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Fuzzy logic-based controller of the bidirectional direct current to direct current converter in microgrid
Microgrids are small-scale power networks that include renewable energy sources, load, energy storage systems, and energy management systems (EMS). Lithium-ion batteries are the most used battery for energy storage in microgrids due to their advantages over other types of batteries. However, to protect the battery from the explosion and to manage to charge and discharge based on state-of-charge (SoC) value, this type of battery requires the use of an energy management system. The main objective of this paper is to propose an intelligent control strategy for energy management in the microgrid to control the charge and discharge of Li-ion batteries to stabilize the system and reduce the cost of electricity due to the high cost of grid electricity. The proposed technique is based on a fuzzy logic controller (FLC) for voltage control. The FLC is based on the measured voltage of the direct current (DC) bus and the fixed reference voltage to generate buck/boost converter signal control. The proposed technique has been simulated and tested using MATLAB/Simulink software which illustrates the tracking of desired power and DC bus voltage regulation. The simulation results confirm that the proposed systems can diminish the deviations of the system's voltage.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]